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Complex Functions Examples c-4 Introduction

Introduction

This is the fourth book containing examples from the Theory of Complex Functions. In this volume
we shall only consider complex power series and their relationship to the general theory, and finally
the technique of solving linear differential equations with polynomial coefficients by means of a power
series.

Even if T have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
11th June 2008
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1 Some simple theoretical results concerning power series

Every analytic function f(z) defined in an open domain 2 can locally be described by a convergent
power series. Thus, if 25 € € is an interior point, and r,, denotes the distance from zp to the boundary
of 2, then we have the alternative description

+oo
f(z)zZan (z— 20), for |z — zo| < 72,

n=0

where the coefficients a,, n € Ny are uniquely determined corresponding to f(z) and the point of
expansion zjy.

The two descriptions complement each other. They have both their advantages and their drawbacks.

First consider complex series without any connection to analytic functions. For given zy € C and a
given complex sequence {a, } such a series is formally given by

+o0
Z an (z — 29)".

n=0

We define the number of convergence A by

0 < A :=limsup V/|a,| < 4o0.

n—-+0o00

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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Then

Theorem 1.1 The power series

“+o0
Z an (z — 20)"
n=0

is absolutely convergent for every z € C fulfilling
1
Az — 2] < 1, thus for |z — zo| < 3= R,

where R denotes the radius of convergence, and it is divergent for every z € C, for which X |z — zo| > 1.

One shall always be more careful, when one considers the points on the circle |z — zg| = 1, because
almost everything may occur here. concerning convergence/divergence. There exist examples of series
being absolute convergent, being divergent everywhere, or conditionally convergent in some points
and divergent in all others, and finally, there even exist examples in which the series is conditionally
convergent everywhere on the circle of radius R. Notice, however, that it the series is absolutely
convergent in just one point on the circle of convergence, then it is absolutely convergent everywhere.
Hence, the advice is to avoid this set, unless one is explicitly asked to investigate it.

There are three main types of power series:

1) If A = 400, then the radius of convergence is R = 0. In this case the series is only convergent
for z = zp, and since a point never is an open domain, it does not make sense in this case to talk
about an analytic function. Hence, this case is not at all interesting in this connection, and we
shall avoid it.

2) If 0 < A < +o00, then the radius of convergence is finite, R = 1/\. The prototype of such series is
the geometric series,

1 =
T2 el <1,
n=0

with the point of expansion zg = 0. We note that the distance between zp = 0 and z = 1, where
the denominator is zero, is precisely the radius of convergence 1.

In a sense all power series of finite positive radius of convergence is a variant of the geometric
series.

3) If A = 0, then the radius of convergence is R = +o00, and the series is convergent in C. The
prototype for such series is the exponential series,

+ool
(3)<p,z':ezzz:—|z”7 z e C.
n

n=0 "

If one can stretch one’s imagination one may say that every series of infinite radius of convergence
in some sense is very much like the exponential series.

Concerning rules of computation for series one must always be very careful to have the same point of
expansion zg for all the series involved. This is typically chosen as zy = 0, so one hardly discovers that
one may get a problem here. Furthermore, they shall all be convergent in the same neighbourhood of
Z0-
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Theorem 1.2 Choose for convenience zg = 0. Assume that

+oo +oo

@)=Y am  and gz =3 bas,
n=0 n=0

are two series, both convergent for |z| < r. Then f(z) £ g(z) and f(z) - g(2) also have convergent

power series expansions, which (at least) are convergent in the same disc |z| < r. Furthermore, they

are given by

+oo too
(f£9)(2) = f(2)£9(z) = > {an£ba} 2", and  (f9)(2) = f(2)9(2) = D caz",  resp.
n=0 n=0

where we by the Cauchy multiplication define
n
Cp = Zakbn_k, n € Np.
k=0

We only know that we have convergence in the original domain |z| < 1. However, if we roughly
speaking, remove a singularity for e.g. f+ g or for fg, then we may get a larger radius of convergence.
It is left to the reader to go through the examples

f(z) =—g(2) = and  f(2) +g(2),

fe) = andg(s)=1-2  og  f(z)-g(),

where the radii of convergence become bigger than for f(z) or g(z). The readers who have just started
on the topic of Complex Functions are advised to avoid the Cauchy multiplication. Without some
experience one usually makes lots of errors, and the method will only be necessary in very rare cases.

One of the main results concerning power series is

Theorem 1.3 Given a power series of radius of convergence r > 0 and point of expansion zy. Then
the sum function

+oo
f(z)zZan (z — 20)" for |z — zo| <,
n=0

is an analytic function. Its derivative is obtained by termwise differentiation,

+oo
f(z) = Znan (z—2)" " for |z —zo| < 1.
n=0

It follows by iterating the latter expression that the series, an hence also the analytic function itself, is
infinitely often differentiable in its open domain of convergence, and that one obtains all its derivatives
by termwise differentiation, i.e. by differentiating under the sum.

By differentiating n times and then putting z = zg, it follows that
1
o (z0) = nlay,, dvs. an = — AR (z0),
n!

thus
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Theorem 1.4 Let f(z) be the sum of a power series of point of expansion zo and radius of convergence
r > 0. Then f(z) is equal to its Taylor series expanded from zg,

+oo

&= o) (o= 20)"  for o=zl <

n=0

This theorem implies the important

Theorem 1.5 THE IDENTITY THEOREM. If two power series
“+o00 “+o00
n n
Zan (z — 20) and ZA” (z—20)",
n=0 n=0

of the same point of expansion zy, are convergent and equal for |z — zo| < r, where r > 0, then
an = Ay, for every n € Ny, and the two series have the same radius of convergence.

We have so far introduced two parallel theories, partly the analytic functions as continuous differen-
tiable functions in the complex variable z, and partly the analytic functions as the sums of a convergent
series. We shall now unite these two theories.

Theorem 1.6 Assume that Q is an open domain, and let f : Q — C be analytic. Given any zg € 0,
the Taylor series of [ with zy as point of expansion, is convergent in (at least) the largest open disc
of centrum zy contained in 2. Furthermore, in this disc,

—+o0

F@) =30 2 5™ (z0) - (2 = 20)"

n=0

In other words: If we start with a convergent series, then it is equal to the Taylor series from the
chosen point of expansion of the analytic sum. Conversely, if we start with an analytic function f(z),
then the corresponding Taylor series of point of expansion zy € 2 is precisely the series with the sum

f(2).

We assume again that f(z) is analytic in an open domain 2, and we let zy € Q. We call 2y a zero of
order n for f(z), if

fD(z)=0 forj=0,1,...,n—1 and [ (z)#0.

This definition is supported by the fact that if zy is a zero of order n, then the Taylor series can be
written

+00 ) +0o )
f(z) = Z aj(z—20) =(z—20)" Zanﬂ- (2 —20) .
j=n =0

Theorem 1.7 Assume that f : Q — C is analytic and not the zero function. Then, to every z € )
there exists an n = n (z9) € Ny, such that f (zy) # 0.

FEvery zero zg for an analytic function, which is not identically zero, is isolated.
Contrary to the case in the real analysis it is not possible to have curves in the complex plane, on which
the complex function f(z) is zero, unless it is identically zero. Note, however, that it is still possible

for its real or imaginary parts to be zero on some curves. This is important for the applications,
because this can be used in practice.

A consequence of the theorem above is
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Theorem 1.8 THE IDENTITY THEOREM. Assume that both f: Q) — C and g : Q — C are analytic in
the open domain Q. If the set {z € Q| f(z) = g(2)} has an accumulation point in Q, then f(z) = g(2)
everywhere in Q.

We shall finally mention a strange, and at the same time important property of the non-constant
analytic functions f : Q — C. If Q is open, then the absolute value | f(z)| cannot attain its maximum
in an interior point of Q:

Theorem 1.9 THE MAXIMUM PRINCIPLE. Assume that f : Q — C is analytic in an open domain Q.
If | f(2)] has a local mazimum at an inner point zg € 2, then f(z) is constant in €.

Of course, we also have a minimum principle, but this is more complicated:

Theorem 1.10 THE MINIMUM PRINCIPLE. Assume that the analytic function f : Q2 — C is not a
constant in the open domain Q. If |f(2)| has a local minimum at an interior point zo € Q, then

The maximum principle does not hold for unbounded domains. There exists, however, a useful version

Theorem 1.11 PHRAGMEN-LINDELOF’S THEOREM. Assume that f(z) is analytic in the right half
plane Re z > 0, and assume further that f(z) can be extended continuously and bounded to the
boundary, i.e. |f(iy)| < M on the imaginary azis. Furthermore, assume that we can find constants
a <1 and K > 0, such that we have the estimate

If(z)| < K -exp (r®), for Re z >0, hvor z =re®,
Then, everywhere in the right half plane,
lf(2)| < M, for Re z > 0.

There exist actually some practical applications of Phragmén-Lindel6f’s theorem in the technical
literature.

Finally, we mention the following theorem, which again shows that it is a very exclusive property of
a function being analytic.

Theorem 1.12 SCHWARZ’S LEMMA. Assume that f : B(a,R) — C is analytic and f(a) = 0 and

|f(2)] < M for every z € B(a, R), i.e. in the open disc of centrum a and radius R. Then we have the
estimate,

(1) |If(z)] < % |z — al for ethvert z € B(a, R).

If we have equality at just one point of z € B(a, R) \ {a} in (1), then we have equality everywhere in
(1), and there exists a constant 0, such that

f(z):ew-%(zfa), for every z € B(a, R).
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2 Simple Fourier series in the Theory of Complex Functions
It follows from the definition that exp(inf) has the period 27 /n. Since also
. 1 ind —inf i o i inf _ _—inf
cosnb = {e +e } og sinnf = — {e e },
2 29
it follows that every piecewise continuous function ¢( theta), 8 € R, of period 27 also has a complex
Fourier series expansion,

—+o0

@) o)~ 3 cue™,

n=—oo
where it can be proved that

1 s

= — o(#) e "0 ap, for every n € Z.
2 J_,

c"

We note here with regards to the introduction of the Laurent series in Complex Functions c-5 that it
is quite natural that the summation of (2) is extended to all of Z, i.e. also to the negative integers.

www.job.oticon.dk
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Here we shall only demonstrate the connection with the analytic functions. Assume that f(z) is an
analytic function in a neighbourhood of 0 with the power series expansion (which exists)

+oo
f(z)= Zan 2", for |z] < o.

n=0

If we here use polar coordinates, z = r e??, then we get for every fixed r €]0, o[ a Fourier series of the
function ¢(#) given by

+oo
w0):=f (r ew) = Z {an "} e™?,
n=0

thus of the structure (2) for
cp, =a,r" forneNj and ¢, =0 forneZ._.

When we apply this technique on the analytic function e*, we get

oo +oo
R r ) "
ef = E — cosnb +1i g — sinnf,
n! n!
n=0 n=0

and since also e* = e (cosy+1 siny), it follows by another insertion and then a separation of the real
and the imaginary parts that
400 0 +0o0 P
e" 59 cos(r sinf) = Z — cosnb, and e" <% sin(r sin ) = Z — sinnf.

n! n!
n=0 n=0

When f(z) = 1/(1 — 2),|z] < 1, is treated in the same way, we obtain after some computation the
following important formulee

1—17r cosf = r sin @ =
—_— = " 0 —_— = " sinnf.
1472 —2r cosé ;)T cos s, 8 1472 —2r cosf Z:;)r St

Finally, it is easy to derive

Theorem 2.1 PARSEVAL’'S FORMULA. Assume that

+o0 too
f(z)= Z an 2", and g(z) = Z by, 2",
n=0 n=0

are analytic functions for |z| < o. By using polar coordinates, z = re™, it follows for every fized
r €10, o[ that

1 27 +oo

1 O TN g0 T 2n

o7 /. f(re )g(rel)df)fzanbnr .

n=0
In particular, if we here choose g(z) = f(z), then

1 27 o +oo )
|f (rew)f do = Z |an] ren,

2_
™ Jo n=0
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3 Power series

Example 3.1 Give (without proof) examples of the various possible forms of convergence on the
boundary of the domain of convergence.

We choose the point of expansion zyp = 0 and the radius of convergence ¢ = 1, thus the series shall all
be convergent for |z| < 1, while we are focussing on their behaviour on the circle |z| = 1.

1) The series

+001

Zﬁzna |Z|<17

n=1
is absolutely convergent for |z| = 1.

2) The series

+o00o
Z 2", |z| <1,
n=1
is divergent for every z on the boundary, |z| = 1.

3) The series

+001

Z Ez”, |z| < 1,

n=1
is divergent for z =1 and conditionally convergent for every z # 1 on the boundary |z| = 1.

4) Let [v/n] denote the integer part of \/n, i.e. the largest integer N € Z, fulfilling N < y/n. It is
possible to prove, though far from easy, that the series

400 1
POEC VNG LR
n=1

is conditionally convergent for every z on the unit circle |z| = 1.

Example 3.2 Find the radius of convergence for each of the series

+oo +oo +oo 2n22n
(a) Y 2", (b) Y n?", © > B
n=0 n=0 n=1

(a) It follows from ¢, = 2™ > 0 that
2n 1

lim

n—-+o0o

lim —— =
n——4oo 2n+1 2’

Cn+1
or ALTERNATIVELY,
. . 1 1
lim = lim =

n— 400 m n—+o00 {1/2—774 5

The radius of convergence is —.
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1
Remark 3.1 The series is convergent for |z| < 3 with the sum

—+oo —+oo 1
27L n — 2 n — .
2 2= ()" = o
n=0 n=0
. 1 Ce
Since 272" does not converge towards 0 for n — +oo, when |z| > ok the series is divergent for

1
> —.
o2 5 0

b) It follows from ¢, = n? > 0 that
(

2
1
= lim — = lim —— =1,
n—-+oo (n+1)2 n—-+oo < 1)

lim
n—-+oo

Cn+41

or ALTERNATIVELY,

2
1 1
lim —— = lim <—> =1.
n—+oo |Cn| n—-+oo {‘/ﬁ

The radius of convergence is 1, and the series is convergent for |z| < 1. Since n?2" — oo for
n — 400, when |z| > 1, the series is divergent for |z| > 1.

s,
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Remark 3.2 If |z] < 1, then it follows by termwise differentiation that

1 RS
9(z) = 1_Z=§z,

—+o0

/ _ 1 _ 2 : n o
g (Z) - (1 _ 2)2 nzo( + 1)
y -
J'(z) = TERE = ngzo(n +2)(n+ 1)z

Since
n?=nm+2)(n+1)=3(n+1)+1,

it follows that the sum for |z| < 1 is given by

+oo
ZnQ ”:Zn—i—Z )(n+1)z —SZn—i—lz +Zz
n=0

= "(2) - 3¢(2) +g(2) = (1_2Z)3(1f’z)2+1iz(fz_jg. 0

f(2)

(c) First note that cap,41 = 0. We shall use a small and simple trick. If we change the variable to
2

t = 2=, we get the series
—+o0
A AL 2m
= a where a, = —— > 0.
nzl nZ+n nzl nt", " nn+1)

We shall first find the t-radius of convergence,

27’L
. . n(n+1) . 1 n+2 1
lim = lim — T (= lm o = -,
n—-4oo Ap41 n—-+oo n n—+too | 2 N + 1 2
(n+1)(n+2)
or ALTERNATIVELY,
1 Yn -/ 1 1
lim = lim ———= lim \/ﬁ—n+:_.
n—-+00 W n—+oo 2" n—-+00 2 2
nn+1)

1
This shows that the t-radius of convergence is o and since ¢ = 22, the original series is convergent

1
for |22 = |t| < 3 hence for

1 2
o< o =2

V2

i

2
and the z-radius of convergence becomes -
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Remark 3.3 By using lim sup, it is possible directly to find the radius of convergence of the series:

] - XmEI_ 12

= lim ————— = lim —_— = O
limsup,,_ oo V/]ca] notee , [ 27 n—too 2 V2 2

nn+1)

Remark 3.4 Put instead w = 2t = 222. Then we get the series

+oo n
)
—n(n+1)

of w-radius of convergence 1. Assume that 0 < |w| < 1 (it would be sufficient with 0 < |w| < 1).
Then

too w™ too wntl
- YN Y o<ul <1,
9(w) w; (n+1)n ngl (n+1)n ol

and we get by two successive differentiations that

—+oo ’U)n +oo
_ v " _ n _
= Z . and g" (w) Zw
n=1 n=0
hence
g'(w) = —Log(l —w) +¢1, e =g'(0)=0, lw| <1,

and then by another integration

g(w) = (1 —w)Log(1l — w) +w + cq, |lw] <1,
where
ce = ¢(0) =0.

Therefore, if 0 < |z| < then the sum is given by

1
\/57
+oo
B 2m 1 (1 —w)Log(1l —w)
1) = ngan—Fn_w w
Log (1 — 22?)
222 ’

= 1- Log(1-22%) +

and of course f(0) = 0, which can also be obtained by a series expansion and taking the limit in
the general expression.

Download free books at BookBooN.com

16



Complex Functions Examples c-4 Power series

Example 3.3 Assume that p € N and q € C, |q| < 1. Find the radius of convergence for each of the
series

“+oo “+o0 )
(a) Z nPz", (b) Z q" 2"
n=0 n=0

(a) Tt follows from the criterion of roots that

r= lim = lim = lim 1 =1.

n—+oo o |Cn| n—-+oo Y/nP n—-+oo ( T n)p

ALTERNATIVELY it follows by the criterion of quotients, keeping p € N fixed,

P
. Cn . nP . 1
r= lim = lim ——— =lim,_, — 7 =1
| = o Gy Tl \ T
n
Hence the series is convergent for all |z| < 1.
If |z| = 1, then
len 2™ = nP — +o0 for n — +o0,

which shows that the necessary condition for convergence is not fulfilled, and the series is divergent
for |z| > 1.

Remark 3.5 It is possible to find the sum for every given p € N, though a general expression is
difficult to derive. ¢

(b) If ¢ = 0, we define 0° := 1, and we get the trivial series

—+o0

2
Z " 2" =1,
n=0

which of course is convergent for every z € C.

If 0 < |¢q| < 1, then it follows by the criterion of roots that

li ! li ! li L) +

r= lim = lim ——= lim (— | =-+oo,

nboe 3ol morboe 3/fgi  nertoe g

and the series is convergent for every z € C.

Remark 3.6 It follows immediately that if |¢| = 1, then the radius of convergence is 1. It is only

possible to find the sum for special values of ¢, |¢| = 1.
If |g| > 1, then the radius of convergence is 0, and the analytic sum function does not exist. ¢
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Example 3.4 Find the radius of convergence for each of the series

+oo “+o00o

W LI Wi @ 2

n:O n=1

Remark 3.7 None of these series has a sum which can be expressed by elementary functions. They
define some new functions in there domains of convergence. ¢

(a) It follows by the criterion of roots that

3n 4n+1 + 5n+1 1 5n+1 +4n+1
- I — i : =2 lim ————
" n—1>r-ir-loo Cn+1 n—l>I-IFloo 4n 4 Hn 3ntl 3 n—l>I-iI-100 BT 4 4n
4 n+1
1 —
5 + (5> 5

LA
3 n—+too (4> 3
1+ 5

4 n
because (3) — 0 for n — +oo0.
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ALTERNATIVELY we can use the criterion of roots

, lim 1 lim ¢ 4™ + 5" lim 5, 14 A\" 5
= 1 = 1i - = — — = —.
n— oo m n—-+oo 3n n—-+oo 3 5

(b) Tt follows by the criterion of quotients that

R el VA |

ALTERNATIVELY we get by the criterion of roots |

1
= lim =1.

1 . 1
Vil W R

Remark 3.8 The essential point is of course that the series has the structure of a power series.
It is of no importance for the radius of convergence that the expansion is taken with respect to
another point than 0. ¢

En

r = lim

CnJrl

1

r = lim

(c) This is a so-called lacunar series, which means a series in which infinitely many of the coefficients
are 0, and infinitely many of them are # 0. Here,

cp=1 forp=2" and ¢, = 0 otherwise.

It is not possible to apply the criterion of quotients in its usual form, because we must never divide
by 0.
Instead we use the criterion of roots in its general form,

1

r=—=
lim sup {/|cy|

and it follows that the radius of convergence is 1.

1

)

ALTERNATIVELY it follows that if |2| > 1, then |2|?" does not converge towards 0 for n — -+o0, so
the necessary condition of convergence is not fulfilled. This shows that the series is divergent for
|z| > 1.

Then assume that |z| < 1. We have the trivial estimate

122" < 2" for every n € N.

Then
“+o00 “+o0 “+o0 |Z‘
2m 2m n __
DRI DL SIF e B
n=1 n=1 n=1

Hence the series is convergent in the domain of convergence

{zeCllz| <1},

corresponding to the radius of convergence 1.
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Example 3.5 Find the radius of convergence for each of the series

+oo +00 . +o0 n?
(=t (z+4)" I\
(a) -yl Gl O A (b) - (c) I+ —) d"(z—1)"
nz::l 2n —1 nzz:l (3n)vr nz::l ( n)

Remark 3.9 It is of no importance for the determination of the radius of convergence that the
expansion in all three cases is taken form another point than 0. The sum function of the latter two
series cannot be expressed by elementary functions, and the sum function of the first series cannot be
expressed as a known function at this stage of the development of the theory. ¢

(a) Tt follows from

(_1)n+1

= on o1

by the criterion of quotients that

Cn, 2n+1
= —1=r for n — 400 —.

2n —1

Cn+41

ALTERNATIVELY we may apply the criterion of roots,

1
=V2n—-1—1 for n — 400,

Cnl

n

hence the radius of convergence is 1.
(b) Since

1
Cn = BV (>0),

the criterion of quotients does not look too promising. Instead we get by the criterion of roots,

1
v |cn|

where we have used the order of magnitudes. It follows that the radius of convergence is 1.

(c) Since

1"
cn:i"<1+—> ,
n

with n? in the exponent, it would not be a good idea to use the criterion of quotients. We shall
instead try the criterion of roots, thus we first compute

= (12) o) e oo (1)) 2o

1 1
— exp(l)=e= - for n — +o0, thus r = —.
T

= (3n)"/V" = exp (% ln(3n)> —el=1 for n — +oo,
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Example 3.6 Find the radius of convergence for each of the series

400 400 n +oo
(@ Dm0 D g (9 D B
n=1 n=1 n=0

(a) Since ¢, = n", we get by the criterion of roots that
1 1 0 ‘
—=—— or n — 400
UYnooon ’

and the radius of convergence is 0.

ALTERNATIVELY we may use the criterion of quotients instead,

lim
n—-+oo

Cn+1

n+1\n+1

Since the radius of convergence is 0, the series does not have a sum function.

(b) Since

. n _ 1 n \"
= G et ( ) —0=r

Cp = 2% > 0,
it follows by the criterion of roots that
L2,

and the radius of convergence is 2.

ALTERNATIVELY we may apply the criterion of quotients,

. Cn
lim
n—-+oo Cn+1

n 2n+1

m —- =2 lim —— =2
n—+oo 2% n 41 n—+toomn +1

Remark 3.10 In this case it is possible to find an explicit expression of the sum function
|w| < 1, then

1 = 1 d 1 =
[ — n d - = - — n—ll
1—w nzzow an (1-w)?2 dw (1w> T;nw
Hence by a multiplication by w,
w o=
n=1
If we here put w = % for |z| < 2, then
N z
X n o 2 2z o
= (1 _ 3)2 (2-2)%

If
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(c) It follows from the structure ¢, = {3+ (—=1)"}" (> 0) that the criterion of quotients is not the

right one to apply.

Instead we use the extended criterion of roots. First note that

2 for n odd,
You =3+ (1) =

4 for n even.
This implies that
limsup ¥/|en| = max{2, 4} = 4,
so the radius of convergence becomes

1 1

r=——=-.
limsup ¢/|c,| 4

T0P 100 [

s PRI

D&
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1
Remark 3.11 Tt is in fact also here possible to find the sum. If |z| < 7 then we get by splitting
the series into two series (with even and odd indices, respectively), because these series are also

convergent for |z| < 7

+oo +oo +00 400 +oo
DB = ) 4Ty o2t 2N T (1627)" 122y (427)"
n=0 n=0 n=0 n=0 n=0

1 2

1—1622 1 —4z2°

Example 3.7 Find the radius of convergence for each of the series

“+o00 +oo “+o0
(a) Z 2™, (b) Z on Z (n+a™)2", a€Ry.
n=1 n=1 n=0

Remark 3.12 The former two series are lacunar series, and it is not possible to express their sum
functions, which exist in both cases, by using elementary functions. ¢

(a) The series is trivially convergent for |z| < 1 and divergent for |z| > 1, hence the radius of
convergence must be 1. ¢

(b) The series is lacunar (infinitely many coefficients are zero in an irregular pattern). This means
that the criterion of quotients cannot be applied. Instead we use the extended criterion of roots.
We get from ¢,y = 2™ and ¢, = 0 otherwise that

n\/m _ (271)1/(71!) — ol/((n=1))) — =15 g for n — +00,

and %/|cy,| = 0, if m # n!, n € N. Hence limsup {/|c,| = 1, and the radius of convergence

becomes r = 1 =1.

(c) Since ¢, = n+a™ > 0, if follows from the criterion of roots that

Veal = Vam+m = jfan (14 ).

If a €]0, 1], then it follows from the first equality sign that the radius of convergence is r = 1.

1
If a > 1, it follows from the latter rearrangement that the radius of convergence is r = —. Summing
a

up we can write

1
7’—111111{17 —}.
a

Remark 3.13 Here we find the sum function in the following way: If |z| < r, then

+oo +oo +oo +oo +oo 5 1

_ _ -1 _
R S S S 3 e
n=0 n=0 n=0 n=1 n=0
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Example 3.8 Find the radius of convergence for each of the series

+oo +oo Zn +oo
@ X O Z(ff—;) C N rewiv

Remark 3.14 It is only possible in (b) to express the sum function by elementary functions, because
we here have a quotient series of quotient and first term equal to

V3 i
NG

We shall not write down the sum function, but leave it to the reader as an exercise. ¢

zZ.

n!
(a) The structure ¢, = —, in which the faculty function occurs, indicates that one should avoid the
criterion of roots. Instead we apply the criterion of quotients to get the radius of convergence

! 1)l 1\" 1\"
= lim . u = liIJIrl <n—|— ) = lim (1 + —> =e.
n—-—4oo n

r= lim
n—-+oo N (n+1)! n n—+o0

n—-+o0o

Cn+1

(b) We have already unveiled this example as a quotient series, so we shall only show the two variants.
It follows from

o (VB !
n — \/5 )

by the criterion of roots that

. : V5
r= lim —= lim |——|=
n—too pfle, | notoo |3+

V5

5

=&

ALTERNATIVELY we get by the criterion of quotients,

n n+1
. Cn . VB +i V5 . V5 V5 V5
r= lim = lim . = lim = — = —
n—too |Cpy1| n—otoo| (/B V3+i n—-+oo |\/3 4 4 2
(c) Since
1
Cp =

(n+ v

it follows by the criterion of quotients,

. . In+14idvn+1 . (n+1)?+1 n+1
r = lim = lim . = lim .
n—+00 | Cpy1 n—-—+oo \n+l|\/ﬁ n—-—+oo n2+1 n
1\? 1
1+—-) +—=
. n n? 1
= lim —1 -1 + — =1.
n—-+o0o 1+ _2 n
n
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ALTERNATIVELY we apply the criterion of roots. Then

1
r= lim = hm n2+1-X/n=1

n——+oo 4”/‘Cn| n—-+oco

Example 3.9 Find the radius of convergence for each of the series

in \" n ni"
n - _ n
(a) 31( 1) z", E (z—1) (c)n21 2"

Remark 3.15 In none of the cases can the sum function be expressed by elementary functions. ¢

(a) Tt follows from

2

n " .2 1
CTL: =1 S ——
n+1 1 n?

n

by the criterion of roots that

li ! li 1+ s

r= lim = lim -] =e

n—+4oo 1/ ‘Cn| n—-+oo n ’

where we note that an application of the criterion of quotients does not look promising.

(b) Since the faculty function occurs, the criterion of roots is not convenient for us here. We get from

Inn
Cn:—'>0 fOI‘TLZQ,
n:.

by the criterion of quotients that

1 1)! 1
L PR . G ) | N P P
n—+o ¢,11  n—+oo nl In(n+1) n—+oo In(n+1)
1
—  lim (n+1)- el = +o0.
n—-+oo 1
Inn + In (1 + —)
n
Since
ni"
Cp = 77—,
Inn

it follows by the criterion of roots that

. 1 . /1nn . Vinn
r= lim —— = lim — = lim =1,
n—+oo I Cnl n—-+o0o n n—-+o0o {‘/ﬁ

because

1< VInn < ¥Un for n > 3,
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and because {/n — 1 for n — +o0.

ALTERNATIVELY we get by the criterion of quotients,

1
n  Inn+1) n lnn—&—ln(l—l—E)_l

L - lim — ——~ = lim .
n—toolnn n+1 n—+oon + 1 Inn

r= lim
n—-+0o0o

Cn41

Example 3.10 Find the radius of convergence for the series

—+oo

nz::l 3% {(—1)" + sin (%) }n 2",
We have
e (Y

hence we get the trivial estimate

< 2 (2
n73n_ 3 )

o
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where the equality sign holds for e.g. n = 3 + 4p, p € Ny. We conclude that

2
limsup {/|c,| = 3
and the radius of convergence is
B 1 3
limsup /[en] 2

Remark 3.16 It is possible in this case to express the sum function by means of elementary functions.
3
If |2| <3 , then

+001

nmT\)"
g {0 (50) )
;371 {( )" + sin 5 z
—+00 An—+1
1 4 1
= Z34n+1 {( 1)4n+1+ sin (7( nt ) )} 4n+1
n=0
+o00 4dn+2
+Z 34i+2 { 4n+2 ( (dn+2) 71_)} ZAnt2
n=0

+oo An—+3
1 4n+3 4n + 3 4n+3
#3 gars {1 :
An+4
)it (4n +4)m Ant4
+Z34n+4{ +sn(72 z

1 = 1 4n+1 4n+1 1 = 1 4n+2
= 52347{—1“} +3 34—n{1—|—0}z
n=0 n=0
1 = 1 1

33 Z 34n _1 1}4n+3 4n+3 34 34n {1+0} Z4n+4

which we reduce to

f%n{(_l)nﬂinc_;)} 3z§<34> 32.23%’(2;_14)” 313:.0(34>

n=1 n=0
B 22 1 2323 1 24 1
A N O N
s S T T
922 24273 24 24+ p2? 24273 22 2423
= - + = + = + . O

81 —2% 81 —162* 81 —2z* 81 — 24 1624 —81  9—22  162*—81
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Example 3.11 Find the radius of convergence for each of the series
1 = i
(a) Z cos (E + z) 2", (b) nz::lcos <1 + E) 2",

Remark 3.17 None of the sum functions can be expressed by elementary functions. ¢

(a) It follows from

1 1 1
cos (—+i> =cos — -cosh1l — i sin — - sinh 1,
n n n

cos | ——+1
n

hence by some calculations

1
Y)en| = *{/cos? ot sinh®1 — 1 for n — +o0.

We conclude that the radius of convergence is

that

2

1 1 1
= cos? — - cosh? 1 + sin® = - sinh? 1 = cos® = + sinh? 1,
n n n

! 1
r=-=1
1

(b) It follows from

) 1 1
cos (l—l—i) =cos1-cosh — —isinl-sinh —,
n n n

cos (1 + i)
n

hence

1
Ylen| = */cos?1 +sinh? =~ — 1 for n — +oo,
n

and we conclude that the radius of convergence is

that

2
1 1 1

= cos?1-cosh? = +sin?1 - sinh? = = cos? 1 + sinh? =,
n n n

! 1
r=-=1.
1
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Example 3.12 Find the radius of convergence for each of the series

+00 foo
(a) Z Log(n +1i) 2", (b) Z cos(1 +in) z"™.
n=0 n=0

Remark 3.18 None of the sum functions can be expressed by elementary functions. ¢

(a) We get from

1?1 1n?
|Log(n +i)|*> = |Inv/n2 + 1 + i Arctan ~ =3 {In (n* + 1)}2 + {Arctan ﬁ} ,
the estimates
1
3 In (n® +1) < |Log(n + )| < Co - In (n® + 1)

for some constant Cy. Now,

YC-Inn?2+1)—1 for n — +o0

for every positive constant C' > 0, so we conclude that the radius of convergence is

1 1
= _ T
lim, 4o |Log(n+1)] 1

r

(b) It follows from
cos(l 4+ in) =cos1-coshn —isinl-sinhn,
that
| cos(1 + in)|? = cos® 1 - cosh® n + sin® 1 - sinh® n = cos® 1 + sinh® n,
so we get the estimates
sinhn < |cos(1+in)| < 2 sinhn for n > ny.

The series has the same radius of convergence as the auxiliary series

+oo
E sinhn - 2".
n=1

Since

. /1 nf1—e
Vsinhn = { 5 (e —e ™) =¢e Te —e for n — +oo,

we conclude that the radius of convergence is

1 1
r= =

lim, 1o Vsinhn €
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Example 3.13 We define Riemann’s (-function by

+oo —+oo
C(z) = Zn_z = Ze‘z Inn
n=1 n=1

Prove that it is analytic in the domain
QO ={ze€C|Re(z) > 1}.

Find f'(z) in Q.

Assume that Re(z) > k > 1. Then we have the computation and the estimate,

— n—w < n—k

— )

—z lnn} _ ’e—(w-‘riy) Inn

and we conclude that

—+oo
>
n=1
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is a convergent majoring series in the domain given by
Re(z) > k > 1.

Then the “smaller series”

+oo
C(Z) _ Zefz Inn
n=1

is uniformly convergent in the same domain. Since every term e is analytic and the series is
uniformly convergent, we conclude that ((z) is analytic in the same domain. This holds for every
k > 1, hence ((z) is analytic for Re(z) > 1, thus in .

—z lnn

If Re(z) > 1, we get by termwise differentiation that the derivative is given by

“+o0 +oo
((z) = Z(—lnn)e‘z I — Zlnn “nT7.
n=1 n=2

Example 3.14 Prove that Y —n = 17" sin(nz) is analytic in the domain
{zeC|-1<Im(z) <1}.

Each term e~ " sin(nz) is analytic, so we shall only prove that the series is uniformly convergent in
{z € C||Im(z) <k} for every k €]0, 1].

Hence we assume that [Im(z)| < k. Then

e ™ sin(n Z) — 2_ e (einz _ efinz) — _ e {efnerinm _ enyfin:c} .
7

Assuming |Im(z)| = |y| < k < 1, we get the estimate

|€—n sm(n Z)’ < e {enk + enk} — e—n(l—k) — an,

N | =

where a = e~ (1=%) €]0, 1[. Since Z:ﬁ a™ is a convergent majoring series, the claim is proved.

Remark 3.19 The sum function cannot be expressed by an elementary function. ¢
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Example 3.15 Let a € R be any real constant, and define n*, n € N, by
n® := exp(a lnn).
Find the radius of convergence for the series

—+oo
Z2n

Z Jnpa’

n=1

‘We introduce the variable

T-6)
w=—= —_
4 2
Then
too Z?n too wn
Z npa a’
n=1 4"n n=1 n

1
Putting ¢, = — it follows that the w-radius of convergence is
n

1
0w = lim = lim n¥" = lim exp (g 1nn) =exp(0) = 1.
n

n—-+oo ”/|Cn| n——+oo n——+o0o
It follows that the series is convergent for
z
w|=|=| <1,
ul =3
i.e. for |z] < 2, and divergent for

2
o

z
wl = |3
i.e. for |z| > 2. Then it follows from the definition that the z-radius of convergence is

0, = 2.

Example 3.16 Given a series Z:i% cn 2™ of radius of convergence o € Ry. Find the radius of
convergence for each of the series

+infty —+o0 +oo
(a) Z cn 2", (b) Z n"ep2", (¢) Z (2" — 1) ¢ 2™
n=0 n=0 n=0

It follows from the assumption that
. 1
limsup V/|c,| = —,
o

where 0 < p < 400.
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(a) Since as, = ¢, and agp+1 = 0, we get

1
= limsup v/|a,| = limsup */|as,| = \/limsup V/|c,| = 7

and we conclude that R = /0.

1
(b) Since {Yn"™ =n — +oo for n — 400, and — > 0, we conclude that
0

1
limsup y/n"|c,| = limn - — = +oo,
o

and the radius of convergence is R = 0 in this case.

Remark 3.20 The claim is not correct, if we allow o = +oo. It is possible to construct series

20 en2™ of radius of convergence o = 400, such that the radius of convergence of 7% n"c,, 2"

(1) R=0, (2) ReR,, (3) R=+oo.

An example is

(1) IOT) cp2™ = ::oi \/_ 0= 400, R=0,
(2) 0 2™ = +°°i-iz" = 400 R=RyeR
n=0 """ - n=1 nn Rg ) 0= ) — 4 +
oo oo 1
(3) : g2 = ::1 e P 0 = +o0, R = +o0. O

(¢) A straigth computation gives
n 2
limsup /(2" — 1) |¢,,| = limsup /2" —1- {/|c,| = —
o’

and the radius of convergence is g

Example 3.17 Given a series Z::(J) cn 2™ of radius of convergence o € Ry. Find the radius of
convergence for each of the series

—+o00 c —+o0 —+oo
(a) Z —T: 2", (b) Z nFe, 2", (¢) Z ckan
n=0 - n=1 n=0

where k € N denotes some constant.

We shall use that limsup {/|c,| = Q , where 0 < o < +00.
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Cn

(a) We see that a,, = ok It is well-known that

has the radius of convergence 400, so

/1 /| Cn
lim {/ — =0, ie. limsup { c_’ =0.
n! n!

In fact, choose N € N, such that

1

Ven < = for every n > N.

IS

Then

2 1
limsup { c_n’ < —lim {/— =0,
n! 0 n!

and it follows that the radius of convergence is R = +oc.

.
. .
A\
iy \‘.‘ <
27\
(27777 XX/ b
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(b) A straight computation gives

1
limsup {/|nFec,| =1-limsup {/|c,| = =,
%

and it follows that the radius of convergence is R = p.

(¢) By a straight computation,

1
limsup {/|ck| = (hmbup Vel ) =

and it follows that the radius of convergence is R = o*.

Example 3.18 Construct a series Z:ioo cn 2™ of finite radius of convergence o (possibly o =0), such
that the series

+oo

Z (14 20) cnz™

n=0

for some zy € C has radius of convergence +oc.

If we choose zg = —1, then
2 for n lige,
1425 =
0 for n ulige.

Thus it is possible to obtain infinitely many zeros among the coefficients (1 + z{}). We can exploit this
by putting

0 for n even,
Cp =
n" for n odd.
In fact,
—+oo
ch _ Z M + 1)2n+1z2n+1
n=0

has radius of convergence 0, while

—+oo

Z(l—i—zo Cn2 ZO

n=0

is convergent for every z € C.
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Example 3.19 1) Find the radius of convergence R for the power series

2)

—+oo

§ 1 n
—22 .

n:ln

Prove that the series is absolutely and uniformly convergent in the closed disc

{z € C|z| < R}.

Find the set K C C, for which the series

+C>o1

nz
Z €
n2

n=1

is convergent for z € K and divergent for z ¢ K.

n

If |z| > 1, then — 400 for n — 400 due to the order of magnitudes. Thus the necessary

1
— Z
n2

condition of convergence is not satisfies. We therefore conclude that R < 1.
If instead |z| < 1, then we get the estimate

+ +

il n| < 21 2
— z — = —.
2 = 2

n:ln n:ln 6

The right hand side is finite and independent of |z| < 1, hence the convergence is absolute and
uniform in the closed disc

{zeCllzsl <1},

and the radius of convergence is R = 1.

By (1) the series is convergent, if and only if
7] = e < 1,

i.e. if and only if 2 < 0. It follows that
K = {z € C|Re(z) <0},

and we have convergence in the closed left half plane.
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4 Analytic functions described as power series

Example 4.1 Prove that for |z — 1] < 1,

—+oo
1 § n
n=0

1
Figure 1: The domain of the series for — from the expansion point 1.
z

Put w =2z —1. Then

11 = o= =
ST = D =D () e = (1)
n=0 n=0 n=0

which holds for |w| < 1, i.e. for |z — 1] < 1.
Example 4.2 Find the Taylor series for e* with the expansion point z = 1.

By some elementary manipulations,

+oo 1 400 e
eF=e-el=¢ —(271)”:5 —(z—=1)".
n! n!
n=0 n=0

ALTERNATIVELY we use the standard method. Putting f(z) = e* we get

M (z) = e, hence FM(1) =e,

and thus
10 £(n) 1 +oo
ez:f(z)zzfn'()(Z—l)n225(2—1)n7
n=0 : n=0

which is convergent for every z € C.
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Example 4.3 Find the power series expansion of

1

Mo =1

from the point z = 1, and indicate its domain.

It follows by a decomposition that

fo oL i1 i 1
T T T i T i 2\ z+i a—if’

perceptive team players. Swedish
es through a forward-thinking culture where you’re

' e ‘ as and global trends.
SII W

Swedish Institute
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and thus
n = %f”’)(n = % NE L i)::;)% o
! —L" ; T . T
= 5 ﬁ . {exp (—z(n+ 1) Z> —exp (z(n+ 1) Z)}
_ % : % {—Qi sin ((n+ 1) %))
= % - sin ((n-|— 1)%) )
The series is then
S " s
1+122 272% Sin((n+1>z) S(z—1)"
Now,

ol =55+ (55)

a — | —= ,

"2 \WV2

where the equality occurs infinitely often, so it follows from the above that the radius of convergence

is v/2. This can also be seen geometrically, because |1 & i| = v/2 is the distance from the point of
expansion 1 to the two singularities i, where the denominator is 0.

05 0.5 1 15 2 25

Figure 2: The distance from the point of expansion 1 to the singularities +¢ and the corresponding
circle of convergence.

Remark 4.1 One can also set up another expression by computing all the coefficients.
If n = 8p, then
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If n=8p+ 1, then

1
a8p+1 = —W

If n =8p+ 2, then

1 1 1
a8p+2zm'%=m.

If n =8p+ 3, then
agp+3 = 0.

If n=8p+4, then

! 1y 1
A8pt+4 = Sapyz ﬁ ' _ﬁ T 94p+3”
If n=8p+ 5, then

—1 1
asp+5 = 5gpps (1) = S

If n = 8p+ 6, then

. 1 1 1 . 1
a8p+6—m'ﬁ' _ﬁ ——W.
If n=8p+ 7, then
agp+7 =0.

Summing up we get for |z — 1| < /2,

1 = =12 (z=1)*  (2=1)° (2—1)¢ .
1+z2:nz%2~16”{1_(z_1)+( 2) - 4) +! 4) = 8) }(2_1)8'

Example 4.4 Find the Taylor series from zy = 1 for each of the following functions, and indicate
the radius of convergence of the series:

1 1
z2—2 (®) 2(z—2)"

(a) By a straightforward computation,
1 1 =

S _— —1)" for|z—1| < 1.
o Py Z(z ) or |z —1] <

n=0
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05 05 1 15 2 25

Figure 3: The domain of convergence in both cases.

(b) By using the same trick we get

1 . —1 B 1 B +o0 12n
-2 (+G-DHl-(=1)] 1-(z-1p ——ngo(z— )",

for |z — 1| < 1.

We can also obtain this result by a decomposition and by using (a), because

~_t+r _rr,rr 1 1t 1 _ 1
2(2—2) 2 2z 2 z-2 2 14+(z2—1) 2 1—(z2—1)
1 +oo +oo +oo
= -3 {Z(—l)”(z D"+ (- 1)"} == (z-1)"
n=0 n=0 n=0
Example 4.5 Find the Taylor series for the following functions from zg = i:
1 2z —1
- b Log(1 — z2).
@5 0 53— (0 Log(l—2)

(a) Putting f(z) = 271 we get
f = (=1)"nlz" 1,

and thus
fmeE o (=nn
n! gl = —gntl’
hence
1 +oo —+oo
- -n+1 _ A" _— -n—1 AN f —il < 1.
p nz::oz (z —1) nz::oz (z—9)", or |z — 1

(b) By a decomposition,

22—-1 z+2-1 1 1
1) =5 = =+

22—z z2(z—-1) 2z z-1
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1.5

Figure 4:

and thus (cf. (a)),

n!
i.e.
f(n)(@) — 1 _
n! (1 =)t

Copenhagen
Business School
HANDELSH®)SKOLEN

The domain in (a) and (b).

f(n)(z) _ (_1)n {z—n—l 4 (z _ i)—n—l} ,
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hence
2z —1 1414 + " .
f(z) = Z—Z{ ( ) }(z—z), |z —i| < 1.
15 3 05 0 05 1 15
Figure 5: The domain of (c).
(c) If we put f(z) = Log(1 — z), then
)y — = D! N
[(z) i—o "EN
hence
fMeE) 1 1 (1+0)"
n n (1-i)»  n.207
and the series is given by
Fo) = Tog—= 3 A0 g Ly TSRO v
z) = Lo —)"==In2—i—— —1 z—1 .
8(l 2 2 47 e ’
Example 4.6 Find the Taylor series from zg = —1+1 for Log z. Determine the radius of convergence
of the series as well as the radius of the largest disc of centrum zg = —141, in which the series converges
towards Log z.
A Taylor series is of the form
+o00
F™ (20)
fe) =3 T o)

n=0

If we put f(z) = Log z (which is analytic in a neighbourhood of zg = —1 + i), then

[P = ()" -1 e,

43
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Jotos f

Figure 6: The series is convergent in the larger disc, and it converges towards Log z in the smaller
disc, actually in that part of the larger disc which lies in the second quadrant.

It follows from

. 1 1+i 1 (71')
20 = = - =——=exp(tz
U i 2 V2 P\a)

that

™ (z0) = —(n—=1)127" - (149" = —(n —1)! (%)nexp <2n %) ,

and we get the Taylor series from zy = —1 + 1,
—+o0 n
_ (n—1!/1 .7 )
L = Log(-1 — — | = ( —) 1—9)"
og z og(—1+1) ngzl py 7 exp (in 7 (z+ i)
+oo n
1 L3 1 1 . \n
= §ln2+zz_n§_1ﬁ<ﬁ> exp(znz> (z4+1—14)".

The radius of convergence r is determined by

1 1/ 1\"
— =limsup {/|c,| = lim {/— <—)

1
r n—-—400 n—-—+oo n \/i o E’

thus r = v/2, which corresponds to the distance | = 1+ 4 — 0| between the point of expansion —1 + ¢
and the branching point 0.

Since Log z has its branch cut along the negative real axis with a discontinuity when we cross over
it, the series found does not converge towards Log z in that part of the disc of convergence which
lies below the z-axis, i.e. in the third quadrant. The radius of the largest (open) disc of centrum
zo = —1 + 4, in which the series is convergent towards Log z, is therefore the distance between the
point of expansion —1 + i and the negative real axis, thus 1 < /2.
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Example 4.7 Find the first five terms of the power series expansion in z from zg = 0 for the following
functions:

(a) e? sinz7 (b) ezLog(l—i—z)’ (C) ezLog(l—i—z).

Remark 4.2 Even if it is very easy to solve the task in MAPLE by using the command taylor, it is
nevertheless a good exercise to try the more old-fashioned o-technique.

(a) We get by inserting

1
27624+0(ZS)

w=z-sinz =z
into the series expansion of e*,

pFsinz 1+%{22_é24+0(Z5)}+%{Z4+0(Z5)}+0(Z5)

= 1+z2+(%—é>z4+o(25):1+z2+éz4+0(z5).

(b) By a Taylor expansion,

s 25 2t 2P 5
w:zLog(l—i-z):z—7—1—?—1—}—0(2).
Then
3 4 5
zLog(1l+z _ w o __ 2 z < z 1 4 5 5
erlosl+2)  — —1—|—{z —5—1—3—1}—1—5{,2 - 2"} +0(2°)
5 3
= 1+22 §Z3+624_125+0(Z5)
If we expand each factor separately, we get
e*Log(l+2) = 1+z+122+l23+iz4+iz5+0(25) X
2 6 24 120
" z2+z3 z4+z5+ (%)
z2——4+—=——-——+—+4o0(z
2 3 4 5
= 2+ )2 (st Dy sy (i )
- T et ) P 82 e)” 173 176)"°
11 1 1 1\, .
+<5 YR 12+2>z +0(2°)
1 1 3
= z+522+§23+4—025+0(z5)
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Example 4.8 Determine the terms of order < 3 in the power series from 0 for

(a) €*sinz, (b) sinz cos z, (c)

(a) We get by a straightforward computation that

e -8z = D) 6 6
3

42+
3

(b) Here we first apply a known trigonometric formula,

: 1 .2_1 5 823 B 2 4
sinz-cosz =g sin2z =92 — e p =222t

(c) By a series expansion and a reduction,

+oo
e -1 1 11, 1
z Zn=l 14 = z —
2 ;n!Z Tttt Tt T

3

22 23 23 23 9 2

2
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Example 4.9 Determine the terms of order < 3 in the power series from 0 for

e® —cosz 1 sin 2z
—7 b b .
(a) z () COs 2 (c) Cos 2
HINT: Let
1 _ 2 3
=ag+ a1z +az” +azz” +---.
CcOSs 2

Multiply (b), and possibly also (c) by the power series expansion of cos z, and then find the coefficients
ap, a1, Az, a3.

(a) By a series expansion and a reduction,

e —cosz 1 14 +22+z3+z4+ 1+22 z4+ 14 +22+0 3
— z J— J— J— e — R — PN — z _ -z e,
20 3t 4l 20 4l 6

z

1
(b) Here is analytic for |z| < E, so
cos z 2

2
=ap+ a1z + azz —|—a323—|—~--.
COS z

Since cos(—z) = cos z is an even function, it follows immediately that a; = 0 and a3 = 0, and the
series expansion is reduced to

=ag + a222 “+ o0 (z?’) .
Cos 2
Therefore, if |z| < g, then

e = (a0 + a22® + 4+)122+Z4
= o5, 0082 = (G0 +a22" +asz o T
a
= a0+(—70+a2)22+0<2’3),
and it follows from the identity theorem that
aq 1
ap an az 9 9’
thus
1 1
=14+-2240-224---, \z|<z
cos 2 2 2
ALTERNATIVELY we find f(™(0) forn =0, 1, 2, 3:
1 ;o\ Sinz no 1 sin? z B[
f(z)_coszv f(Z)_COS2Z7 f (Z)_COSZ COS?’Z’ f (Z)—SIHZ { }7

from which follows that

fO)=1, f)=0, f'0)=1 f30)=0,

so by insertion,

1 1 1
=1+=2240-22=- . =14-2240-22+.--
cos 2 2! 2
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(c) Using the result of (b) we get

. 3 1
tanz = smeo Z_Z__|_... 14+ -2240-224...
cos 2 3! 2
1 1 1
ALTERNATIVELY,

f(z) = tanz, f'(z) =1+ tan® 2, f"(z) =2 tan z + 2tan® z,
f@(2) =2 (1 +tan?) +tanz - {---},

hence
FO)=0, fO)=1 f'0)=0, fO0) =2,

and we get

¢ Loy 2y Ly for 2| < =
anz=—z+—2"+--=z2+=-2"4--- or |z] < =.
T 3 ’ 2

Example 4.10 Find the radius of convergence for the Taylor expansion from zo =1 for

eZ

L P Y P Y P P

Figure 7: The four singularities and the disc of convergence.

The radius of convergence is the smallest distance from the point of expansion zy = i ti the poles
{—1,1,2,3}, hence o = V2.

Remark 4.3 Note that one does not want the full Taylor expansion for a very good reason. It will
be a very difficult task to find the coeflicients using decomposition and multiplication of series. ¢

Download free books at BookBooN.com

48



Complex Functions Examples c-4 Analytic functions described as power series

Example 4.11 Find the sum function f(z) in|z| < 1 for each of the following series:

too T Lontl too ) »2n
@ Ym0 Yo (@ D)
n=1 n=0 n=1

We shall use various variants of the geometric series

+
3

1 = Zz” for |z| < 1.
-z

(a) It follows by termwise differentiation of the geometric series that

1 io
n—1
A—z2 2"
(1-2) —

hence

+o0 P
f(2) :Zlnzn = (1—2)2

S o N, ~,
y /

i i/ v‘\ v‘\
1 05 05 1 15 2
Iy y i i
l‘\, l\, ’/. ’/.

J/ /

Figure 8: If z lies in the unit disc, then both 1 4 z and 1 — z lie in the right half plane.

(b) If we differentiate the given series

too L2n+1
fz) = 20+ 1
then
+oo +oo 1
f(z) = ZZ% = Z (ZQ)TL = 1_.2
n=0 n=0

so f(z) is a primitive of

1 1 1

1
1—22 2 142z 2 1—2
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We conclude from
d 1 d 1
= Log(l42)= —— Zlog(l—2)=—— 1
P og(1l+ 2) 55 g - og(1 — 2) T or |z <1,
that
1
f(z) = 5 (Log(1 +2) ~ Tog(l-2)}+C,  [o] <1

If we put z =0, then C' = f(0) = 0, and since both 1 + z and 1 — z lie in the right half plane (cf.

the figure), their principal arguments lie in ]—g , g [, thus
Arg(l1+42)— Arg(l—2) €] —n, 7.
Then we conclude (and only at this point) that
1 1 142 . 1+2
flz) = 5 {Log(1+2) — Log(l—2)} = 5 {ln ‘:‘ +i Arg (1 —z)}

1 142
- L 1.
slos(12). k<
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(c) We get by the substitution w = 2% that

+oo
f(z) = Z( 1)+t z_ = Z 1)"*'. — = Log(l1+w) = Log (1+2%), |z] < 1.
n=1
ALTERNATIVELY it follows by termwise differentiation
+oo +oo 25
/ _ _1\n+1 | 2n—1 __ o n 1 2n 1)
f(Z)_n;( .2z _2zn§( 2zz = k<L

so f(z) is a primitive of 5- Since |z| < 1, anyone of these primitives is given by
z

f(z) = Log (14 2%) +C.
Finally, we put z = 0 to obtain C = f(0) = 0, thus

f(z) = Log (1+2%), |z| < 1.

-1 Log(1
Example 4.12 Prove that if sz ¢ and og(1 +2)

z z z
then these functions are analytic in a neighbourhood of 0
Then find the Taylor series of

are all extended by the value 1 to z = 0,

_ [7sing [Pt -1 (7 Log(1+()
se)= [ Tra )= /0 L) - /0 e ac

(a) If z #0, then

’ﬂ

+o00
sin z Z
frd 2n+ 1)! "

which quite naturally is extended analytically to z = 0 with the value 1. The radius of convergence
is 400, and it follows by termwise integration

# sin C =% ) L2n+1
d "d .
0 ¢= / Z (2n —|— 1)! 6 de= Z (2n + ! 2n +1

(b) In the same way it follows from

5(2)

+o0 o +o0 o
1= - = —_— e C,
€ nz::ln! an:%(n—i—l)! i

that

e —1 =

Zn+1 for z # 0,
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where the series has the value 1 for z = 0, so we can extend the function analytically by the value
lat z=0.
Then by a termwise integration for |z| < +oo,

¢ —1 * R X1 ot X
E d —_— = "
(2) = / ¢= / Z n—l—l Z:;)(n—i—l)!n—kl n:1n~n!Z

(¢) Analogously, it follows from

+oo n too n
LOg(l—i-z):Zﬂz”:zzﬂz”, 2] < 1,
n=1 n n=0 ntl

that

Log(1 + 2) = (=)™
= " 0 1
. EO“HZ’ <zl <1,

where the series is also defined for z = 0 with the value 1. If |z| < 1, we get by termwise integration

Log(1 + 23X ( "y X (et
o) = [ - /er—lc &= Z =3
n=1

Example 4.13 Given a piecewise continuous function f(t) for t € [0,a]. Prove that

F(z) = /0 et (1) dt

is an analytic function in C, and find its power series expansion.

The series

(02

et =1—2t+ N

n!

is for any fixed value of z uniformly convergent in ¢ € [0, a]. We can therefore multiply by the bounded
function f(¢) and then perform termwise integration. This gives

_ [ [ U ) L
—/Of(t)dt /Otf(t)dt+ O /Otf(t)dH- ,

which is the wanted power series expansion.

Now, f is bounded (because f is piecewise continuous over a closed bounded interval), so | f(t)| < M,
and we get

_\n a n a n n+1M
(=2) / £ F(t) dt| < ﬂ/ poargr = AT M
n! Jo n! Jo (n+1)!
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According to the criterion of majoring series it suffices to prove that > ¢, |z|™ is convergent for every
z € C. This is obvious for z = 0. If z # 0, then

+oo 00 n
a +1M |n M Z (G|Z|) % (ealzl B 1),

(n+1)! & nl 2]

n=0

hence Y ¢,|z|™ is convergent for every z € C, and the domain of convergence is C, i.e. F(z) is analytic
in C.

Remark 4.4 This example indicates a method of determining the Laplace transformed of a piecewise
continuous function, which is only # 0 on a closed bounded interval. ¢

Example 4.14 Assume that g(z) is analytic in |z| < R, and that g(0) = 0. Apply WeierstrafS’s
1

1—g(z)

Find in particular the first three terms in the power series expansion (from 0) for

double series theorem in order to find a power series of

cosz’

Since

1 = Foo
1—g(z) = nz::o{g(Z)}n = Zgn(z) for |g(2)| < 1,

n=0

and since ¢(0) = 0 implies that |g(z)| < 1 in a neighbourhood of 0 (where the convergence is uniform
for |g(z)| < k < 1), and ¢¢ = 0, it follows that

1 +o00 (+o0 " 4oo +00 n
7(2) :Z{Zcpzp} :Zz" {Zcpﬂzp} .
n=0 \(p=1 n=0 p=0

l-g
Since
I 1
cosz 1—(1—cosz)’
we get
too n+1 2 4 6
B B (-t L, =z z z
g(Z)_l_COSZ_;WZ _5_1—’_5_“.’ z €C,
hence (if |1 — cosz| < 1)
1 14 22 z4+26 n 22 22 9 22 z4+ 22-22-22+ n
cosz 20 41 6! 212! 2! 4! 21212!

22 5 61
= 144 24y 0 6,
+2+24z+7202—|— s

when |1 — cosz| < 1. Note that because the power series expansion is unique in the larger domain

2| < =

5 the same expansion holds here.
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Example 4.15 Find the first three terms of the power series expansion from zg = 0 for the solution
w of the transcendental equation

HINT: Find w(0), w'(0), w”(0), ..., and then apply Taylor’s formula.

When we differentiate the equation (with respect to z)

z=we ",
then
dw dw
1= (e —we ) & —emw 1 —w) &2,
(e we >dz e (1 —w) 7

Here we put z = 0 and w = 0, and then get by a reduction that

dw

= =1
dz |,_,
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By another differentiation,

Ew dw\?

and we obtain in the same manner,

e " (1—w)

d?w

| T*

z=0

Since e~ # 0, this equation is equivalent to the simpler equation,

d*w dw\?
l—w)—=— —-(2- — ] =0
(1-0) 5 - 2-u) () =0
When this equation is differentiated we get

Pw  dw dw dw d*w (d_w>3_0

dz  dz? dz
hence by insertion of the previous results,

dPw

e =1-24+2-2-1-2-1=9.
z

z=0

Finally, by insertion into Taylor’s formula we obtain in a neighbourbood of zy = 0 that

Example 4.16 Lad M € R. Prove that if f(2) is analytic in C, and
Re(f(z)) < M
for every z, then f(z) is constant.
HINT: Apply Liouville’s theorem on exp(f(z)).
When we split f into its real and imaginary part, f = u + i v, it follows from the assumption that
u(z,y) < M for every (z,vy).
Since exp(f(z)) is analytic and
exp(f(z)) =€ - (cosv + i sinwv),
we conclude that
lexp(f(2)) < e* < eM for every (z,y),

thus exp(f(z)) is a bounded analytic function. Then it follows from Liouville’s theorem that exp(f(z))
is constant, and since f is continuous, we conclude that f(z) is also constant.
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Example 4.17 Define the Bernouilli numbers B,, by the power series
+oo
z B, .
P BETEe

. z .
where lim,_,g —— exists.
e —1

First determine this limit.
Then multiply by e* — 1 to prove that the Bernoulli numbers satisfy the recursion formula

n—1 1
ZﬁBj:O forn > 1.
= =)

Find Bo, Bl, ey B4.

Prove that B, =0 for n # 1 odd.
Determine the radius of convergence of the series.

Since

z _ 1 2
e —1—2—}—52 + e

is different from zero for z # 2ipm, p € Z, we conclude that

1
lim = lim ~

=06 =1 22024 122240(22) 2201422+ 0(2) 0

It follows that By = 1. Furthermore, the power series is convergent in the largest open disc of centrum
at 0 which does not contain any number of the form 2i pm, p € Z\ {0}. The two closest singularities of
the point of expansion zg = 0 are +2i 7, so we conclude that the radius of convergence is | +2i 7| = 27.

Assume that |z| < 27. If we multiply the equation by

+o00 1
z _ - .n
e —1= Z ] 2"
n=1
it follows by a Cauchy multiplication that
XB ;X1 1
— 2d . ok —_B."
Z—Z 7 z Zk!z =Byz+ Z j!k!B]Z .
j=0 k=1 itk=n
j>0,k>1

When n > 1, it follows from the uniqueness theorem that

1 1
0= > @Bi=2 5B
dtk=n =0
20, k=1
If n = 1, we again obtain (in accordance with the previous result) that

0

1
= M=)
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Replacing n by n + 1, it follows from the above for n > 1,
n—1

- 1 1 1
0=SN_ -~ B -—-_B - B,
;j!(n+1—j)! T "+Zj!(n+1—j)! 7

hence
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We have already proved that By = 1. Then successively by (3),

0
1 2 1 1
B = -- " )B;=—-By=—-
! 22(]) IT T Ty
7=0
1
1 3 1(/3 3 1
= () me(1)ad e ()
7=0
2
1 4 1 4 4 4 1
By = —-- ) B == B B Byb=—-{d1--424=0
' 4j=0(ﬂ>] 4{(0>0+<1)1+<2>2} { 2+6} ’
3
1 5 1 5 b) 5 5
so= 52 (5)mmg {(0) e (1) (5) 2 (3) 2]
=
1 5 10 1 1
= 1242 = {6-15+10} = ——.
5{ 2% O} 50 (615410} =35
Summing up we have found the first five Bernouilli numbers,
1 1 1
By=1, Bi=—=, By=-, B3=0, By=-——.0
0 ) 1 0% 2= 5 3 ; 4 30
If
z B1 z 1
#(2) -1 TTmfT e et
+oo
B,
= Z—'z”, for 0 < |z] < 2m.
— nl
then for 0 < |z| < 2m,
+oo
B —z 1 —ze* 1
(1) = = —1—Zz= —1-=
;n!( )z wE) == 27T 1 ¢ 2°
_ze 7171272(671)+271712
e —1 2 e —1 2
z 1 z =X B
= —1—Zz= —1+=z= = —nn
S 2 T e 1Tl T; !
Since

+oo —+oo
B, B,
E (-)r—2z"= E — 2" for |z| < 2,

n! n!
n=2 n=2

it follows by a reduction that
+oo

_ Bont1  _oni1
0—2;m2 5 for |Z|<271'7

and we conclude by the identity theorem that Bs, 1 = 0 for every n € N.
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Example 4.18 Applying the Bernouilli numbers introduced in Example 4.17, prove that

xp (=) —exp(—= n—
P B p 5 0

Then replace z by 2imwz to prove that

z z
2 eXP(i)*GXP(‘i) =1 o

+oo
1
Tz cotmz = Z(—l)” eIk (2m)" By, 2°".
n=0 ’

It follows by a simple computation that

z z
2 exp(§)+exp(—§) 7ot iR ef+1 2z e#—-1+42
— . = —.cot— = — - — — .
2 (f) 2 2 2 e-1 2 e —1
exp (5
+o00o +oo
z n Ban,
= — —_n — B
2+n: nl 5" 12+;(2n)!

1
using that By = —3 and Ba,+1 = 0 for n € N by Example 4.9.

If we replace z by 2imwz, then

2irz  exp(inz) + exp(—inz) X By, . 5
2 exp(imz) — exp(—inz) m 2 - cot(r 2) = (2n)! (2imz)
“+oo 1
= > ()" o - (2)" By 22"
nzo( ) (QTL)' ( 7T) 2n #
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Example 4.19 1) Denote the roots of the polynomial of second order z*> +z — 1 by a and b (where
|b| > |a|). Prove that the function

- 1
T 1—z—22

f(2)

has the Taylor expansion

+oo
Zanz", |z| < |al,
n=0

where the sequence of coefficients (ay,) is determined by the recursion formula
ag=ay =1, Gp+2 = Qpy1 + G-

2) Decompose f and then expand termuwise to prove the formula

N bn+1 _ an+1

an = (1) b—a

3) Find the Laurent expansion of f in the circular annulus |a| < |z| < |b].

Figure 9: The disc and the annulus defined by a (to the right) and b (to the left). The disc is considered
in (1) and (2), while the annulus is considered in (3).

Remark 4.5 Since 22+ 2 — 1 =0 for
C-1+VT4+4 —1+45

N 2 N 2

it follows that

V5 -1 V541

a= 2 andb = — 5

z

which gives us some feeling of where a and b are lying, cf. the figure. The purpose of the example is,
however, that it is possible not to apply the exact values of a and b. ¢
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1) The function f(z) has a Taylor expansion for |z| < |al,

)= zan, 2l < lal.

Thus by a multiplication by a — z — 22 for |z| < |al,

+oo +oo +oo +o00
1 = (1 — z—z2) g apz"t = g apz" — E a2t — g Ap 2" T2
n=0 n=0 n=0 n=0

400 400 —+o00
= ap+ayz+ Z apz" — agz — Z anz"tt — Z Ap 2" T2
n=2 n=1 n=0
+oo
= ao+(a1—ao)z+ Y {ant2 — angp1 — an} 2"
n=0
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Then it follows from the identity theorem that

apg = 1,
a] — ap — 0,
An42 — Gpy1 — Gp = 0, n € No,
thus
ap =a; =1, Apt2 = Apy1 + Ap, n € No.

2) The product of the roots is equal to the constant term, so

Z—_p d -
. , an b a,

which we shall use in the following. Then we get in the disc |z| < |a| by a decomposition and by
the geometric series,

£(2) 1 1 1 1 1 1 1
z = = — = — = — . — .
1—2z—22 22+z-1 (z—a)(z—b) a—b z—a b—a z—0b
1ot or o111 1 1
a b—a a 1_% b—a b 1_Z% b—a 146z b—a “ 1+az
a b
—+oo +oo +oo
1 nin_n n_n._n nbn+1_an+l n
= b_a{bZ(—l) b2t —ay (—1)"a"z }:Z(—n — "
n=0 n=0 n=0

because e.g. |bz| = ’—‘ < 1 in the disc given by |z| < |a| < |b], and analogously |az| < |bz| < 1 in
a

the same disc.

Since this series expansion is the same as the given series expansion,

+oo
S an", |zl <lal < Jbl,
n=0

we conclude that
N bn+1 o an+1

an = (=1) b—a

n € Np.

3) Assume that z lies in the annulus |a| < |z| < |b|. Then by the decomposition above,

£(2) 1 1 1 1 1 1 1 1 n 1 1 1
zZ = = — . — . = . — - —_
1—2—22 a-=b z—a b—a z—b b—a z ,_% b—a b {_Z
z b
1 1 a” 1 1 1 ;1 a
= . — R . . — n—41 - _1nnn
b—a anZ:Oz" b—a “ 1+4+az b—a;a 2" b—ango( )ha’z
+oo 1 “+o00 n—1
a 1 a
= - 717’74 n
D i) B e i et
n=1 n=0

where the estimates
‘ﬂ‘<1 and ’f‘z\az|<1,
z b

secure the convergence.
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Example 4.20 Given the sequence ag, a1, ..., Gn, ..., by the recursion formula
ag = ]-7 a1 = 713 Upy2 = —Op41 — Qana n > 0.
1) Prove that the function

1

) = 1+ 24222

has the power series expansion

+oo
g anz",
n=0
and determine the radius of convergence.

2) Denote the roots of the polynomial 1+ z + 22% by a and b (where Im(a) > 0). Prove the formula

an+1 _ bn+1
a—b>b

an, = 2"

by decomposing f(z) and then expanding every term in some series.

3) Prove by putting a = €' the formula

ap, = \/2"-§~Sin(n—|—l)v,

where v is defined by

1
CoSV = ——— O<ov<m.

2V2’

1) Since 22% + z + 1 = 0 has the roots

-1+£T-8  —1+iV7
- 4 4

the function f(z) is analytic in the disc

V12
T 2

< |— | =
w| -

so f(z) has the Taylor expansion
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where we shall prove that b, = a,.
When we multiply by 1+ 2z + 222 # 0 we get

+oo +oo +oo +oo
1 = (1+2+422°%) f(2) = (14 2+22°) Z bpz" = Z bpz" + Z b2+ Z 2b,, 2" 2
n=0 n=0 n=0 n=0
+o0 +o0 +oo
= byg+biz+ Z bpz"™ + boz + Z b2t Z 2b,,2" 1?2
n=2 n=1 n=0
“+o0 +oo “+o0
= bo+ (bo+0b1)z+ Z 22" T2 + Z boi12"2 + Z 2b,,2" 2
n=0 n=0 n=0
+oo
= bo+ (bo+0b1)z+ Z {bpto +bps1 +2b,} 2"
n=0

It follows by the identity theorem that
bo = 1, b1 = 71)0 =—1 and bn+2 = 7bn+1 — an, n e NQ,

so the two sequences (a,) and (by,) fulfil the same difference equation. The solution of this is
unique, so we conclude that b, = a,, n € Ny. It also follows from the above that the radius of

convergence is r = —.

V2

2) Then

—14iV7 —1-iV7
G/:T and b:?

1 1 1
are the roots of the polynomial. Since a-b = 3’ we have — = 2b and ;= 2a.
a

1
Then by a decomposition in the disc |z] < —,
y p |2| 7
1 1 1 1 1 1 1 1
1z = 222+z+1_2(z—a)(z—b)_§.b—a.z—a+§.a—b-z—b
! -1 1 +1 -1 1 1 1 1 1 1
2 (b—a)a 1% 2 (a=bb 1_% 2 a-bla 1_% b 1_Z2
a b a b
—+o0 +oo
1 1 1 1 1
= - . -2 = b 20)" 2" — 2a)" 2"
2 a—b{ 1—2bz 1—2az} a b{ nz::o( )z anz::o( a)z}
+oo +oo
bn+17an+1
_ on . n __ nn'

Hence it follows by the identity theorem that

an+1 o bn+1

L= € No.
Q. a—b n 0
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3) Then we introduce polar coordinates

STl (@ i@)

v

a 1 ﬁ 1 + 1 =re -,
thus 1ad €10, w[, where
usr = — and v , [, wher
V2
cosv——ﬁ——i
4 NEY

Since b =a = re ", it follows tht

qntl — pntl on . pntl {ei(n+1)v _ e—i(n+1)v}

| — 7 sin(n v
V2

a, = 2" =
" a—b LT 1T V7
4 4 2
2n7%(n+1)+1+1 1 . 3
. sin(n+Dv=—-22""2 gin(n+ 2)v
7 ( ) 7 ( )

1 1
2n+3 2 8. on b
( - ) sin(n 4+ 1)v = ( - ) sin(n + 1)v.

Example 4.21 Put

+0oo n .2n+1
n 0%
S(z)=> (-1) T for [z| <R,
n=0

where R denotes the radius of convergence. Determine R, and find explicitly for |z| < R the derivative

S’(z) as a function of z.

It follows from

s(2) +§( n gn ,2n+1 1 +§( b (\/§Z>2n+l
z) = — — = — —
o 2n+1 V3 = 2n+1

that the condition of convergence is
1
V3z| <1, thus zl < R=—.
V32| |2l 7
The by termwise differentiation for |z| < —,
y 2| 7
+00 +oo 1
Sl — _1n3n2n: _177.32”: .
(0= X" = 3" (0 =

65

Download free books at BookBooN.com



Please click the advert

Complex Functions Examples c-4 Linear differential equations and the power series method

5 Linear differential equations and the power series method
Example 5.1 Solve the differential equation
f'(z) = f(z)=0
—+o0

by insertion of a formal power series f(z) =) " anz".

Remark 5.1 In spite of the formulation we shall try all four solution variants. ¢

First method. Inspection. It follows from

d

z z
—e
dz

:67

that the function f(z) = e* trivially satisfies the homogeneous differential equation, so the complete
solution is given by

f(z) =c-¢€%, ¢ € C arbitrart constant.
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Second method. Integrating factor. If the differential equation is multiplied by e™% # 0, then we
get by some small manipulation the equivalent differential equation

0= ) e s = Ly pe Lo = e pa))
We then get by integration,
e " f(z) =c, thus f(z)=c-€*, ¢ € C arbitrary constant.

Third method. Determination of f( (20). We have clearly one degree of freedom, so we choose
f(0) = ¢ € C, arbitrary. We get by successive differentiations of the given differential equation
and rearrangements

f™(z) = fr=Y(z), for every n € N,
hence by a simple recursion,

Fn)(0) = f"D(O0)=---=f0)=c, neN.

Then the Taylor series from zg = 0 is formally given by
+oo 1 +oo 1
f(z):Z()Hf(")(())z":czomz":c-ez, z € C,

where we immediately recognize the exponential series with its domain C.

Fourth method. Determination of a recursion formula for a series solution. We assume that the
equation has a power series solution

+o0 too
flz)= Z anz" where f(z) = Znan P for |z| < o,
n=0 n=1

where we also shall find p. We get by insertion into the differential equation,

+oo “+oo +oo “+oo
0 = fl(2)—f(z)= Znan 2" — Zanz” = Znan 2" — Za"—l 2"
n=1 n=0 n=1 n=1

“+o00
Z {na, —an_1} 2"
n=1

where these computations are legal, if only |z| < p. Hence, we have a power series expansion of
the zero function, and since this is unique, we conclude that we have the recursion formula

na, — ap_1 =20 for every n € N.

We multiply this formula by (n — 1)! #£ 0. Then by a rearrangement and recursion,

nla, =Mn—Dap,_1=---=jlaj =---=0lag = ao,
thus
1
an = ag - — for every n € N,
n!
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and we derive the formal series solution,

—+oo +oo 1
f(z)= Zanz" :aoz — 2"
n!
n=0 n=0

If we recognize this series as the exponential series, then we have finished our task, because we
know that the exponential series is convergent in C. Otherwise, we split into the cases ag = 0
(where we get the not so interesting zero series which is convergent everywhere) and ag # 0, where

= lim
Q n—-+oo

= lim (n+1) = +oo,

n—-+4oo

Apn41

and the domain of convergence is C.

ALTERNATIVELY the recursion formula can be solved less elegantly in the following way:

1 1 1 1 1 11 1
Ay = — Qypy 1 — — -+ Ay — +0 0 — — = e = s — o0 = —
R T n n—1 21 ° 1o
and then we proceed as above.
Example 5.2 Solve the differential equation
(1=2)f'(2) = f(2)
by e.g. inserting a formal power series f(z) = :i% anz™.

First method. Inspection. We get by a small rearrangement,

d
0=(1-2)f"(z) = f(z) = {1 =2)f(z)},
the primitive of which is (1 — 2)f(z) = ¢ € C, and thus
f(z)zliz, for z # 1.

Second method. Determination of f™ (zy). The expansion point is zg = 0, and the coefficient
of f'(z) is only zero for z = 1, so the Taylor series is at least convergent for |z| < 1. When we
differentiate the differential equation it follows after a rearrangement that

(1=2)f"(z) =2 ().
This gives us the hint that we possibly in general have
(1—2)fM(2) =n M (2), n € N.

This is true for n = 1 and n = 2, and if we differentiate the conjecture, we get after another small
rearrangement the same structure of the equation, where only n has been replaced by n + 1, and
the claim follows by induction.
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Since zg = 0, it then follows by recursion that

F0) =n fm7(0) = - =nl £(0),

and the Taylor series is the same one as we found above,

+oo 1 +o0 1 400
:Zﬁf(n) Z—, n'l £(0) f(O)Zz",
n=0 n=0 n=0

where the radius of convergence again is seen to be p = 1. The series is a quotient series of quotient
z, where |z| < 1, hence

for |z] < 1,

though it is obvious that we can extend it to C\ {1}, because the differential equation is also
fulfilled here.

Third method. The method of power series. We assume that the solution has the power series
expansion

+oo +oo
= Z an 2" where f(z) = Z nay, 2" for |z| < o.
n=0 n=1

When these expressions are put into the differential equation and we assume that |z| < o, then

“+o0 “+o0 “+o0
0 = (1-2)f"(2)—f(z) = Znan,z”“1 - Znanz” - Zanz”
n=1

n=1 n=0
—+oo +oo —+oo
= Z(n + Dapyr 2" — Z(n + a, 2" = Z(n + D {ant1 —an} 2"
n=0 n=0 n=0

It follows from n + 1 # 0 for every n € Ny, that we can divide by n 4+ 1 in order to obtain the
simpler recursion formula

(pt1 = G, n € Np.
It follows by recursion that
Ap+1 = AQp = Qp—1 = -+ = 4Q, TZEN(),

an our formal series is given by

—+oo
z) =agp E 2",
n=0

If ap = 0, we get the zero series which is convergent everywhere.
If ag # 0, then

an

= lim
0 n—-+4oo

Ap+41
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Example 5.3 Ezamine the inhomogeneous linear differential equation
2f(2) = f(2) = —=,

and its possible solutions in the neighbourbood of zo = 0.

First method. Inspection. When z # 0, we multiply the equation by the integrating factor

Z%exp(%);é() for z € C\ {0}.

—é exp (%) = exp (%) f(2) - 2—12 exp (%) f(z) = % {GXP (é) f(z)} '

So far, so good, but then everything goes wrong, because it is not possible to find a primitive
of the left hand side in any neighbourhood of zy = 0. The problem is that the Laurent series
expansions starts with the term —1/z, so we shall consider a (complex) logarithm. These will all
have a branch cut to zp = 0, and it will follow from a later book in this series that it is impossible
to obtain a Laurent series around the point zy = 0.
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Second method. Formal determination of the Taylor series. If we put z = 0 into the differential
equation, then f(0) = 0. We proceed by differentiating the differential equation,

2f(2) + (22— Df (2) = 1, F0 =1
22 f(3)(z)+(4z—1)f”(z)+2f’(z) =0, f”(O) =2,
22 fD(2) + (62 = 1)fO)(2) + 6 f"(2) = 0, [0 =12

Then it follows by induction (left to the reader) that
2 )+ 2nz— 1)) +nn—1) F0D(2) =0, m > 2,
hence for z = 0,
F0) =n(n—1) f*D(0),  n>2
When we divide this recursion formula of () (0) by n!(n — 1)!, then we get by recursion,

fU0) o) 2P0 2
nlln—1)!  (m—1Dln-2)! 211 2

and the Taylor coefficients become

1

— M) = (n — 1)
p (0)=(n—1), n €N,
so the formal Taylor series is

—+o0

+00 1
Z ] F(0) 2" = Z(n —1)!z"
n=0

n=1
Hence, the radius of convergence is

—1)!

n—-+4oo n! n—-+oco n

so the Taylor series expanded from zy = 0 is only convergent for z = 0, and we cannot use the
series expansion to anything.

Third method. The power series method. Assume that the solution has a convergent power series
expansion,

+oo
flz)= Z an 2" for |z] < o.
n=0

Then by insertion into the differential equation,

+0o +o0o +o0 +oo
22— fz) = 22 Znan 2 - Zan 2" = Znan P Zan 2"
n=1 n=0 n=1 n=0

—+ 00 “+o0 —+o00
= Z(n —Dap—12" - Z an 2" = —ag + Z {(n=Dap—1 —an}2".
n=2 n=0 n=1
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If this expression is put equal to —z, then —ag =0, and 0- a9 — a; = —1, thus a; = 1, and
an = (n—1)a,_1, n > 2.
We get by recursion, a,, = (n — 1)!a; = (n — 1), so the formal series becomes

+oo

Z(n—l)!z".

n=1

It is immediately seen that this series is divergent, whenever z ## 0, so we cannot use the series
expansion to anything.

Remark 5.2 In particular, the example demonstrates that we have never finished this method of
power series solution, if we have not also found the corresponding open domain of convergence. ¢

Example 5.4 Solve the differential equation

fl(2) =2 f() =0
_ +o0o n

by assuming that its solution can be written as a (formal) power series f(z) = > ") anz".

Remark 5.3 As usual we shall again demonstrate all three possible solution variants. ¢

First variant. Inspection. In the neighbourhood of any point in which f(z) # 0, we see that the
equation is equivalent to

f'(z) _

f(2)

Since Log f(z) is locally defined in the neighbourhood of any such point, the primitive exists and
is given by

2

Log 1) = %+

so we have locally,

(1) f(Z)zC-exp<Z2—2), cec.

Then we CHECK the solution. Any solution must have the structure (4). On the other hand, if
f(2) is given by (4), then f(z) is clearly analytic in C, and it follows by differentiation that (4)
fulfils

f'(z) =2 f(2) =0,

so (4) gives us all solutions of the differential equation.
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Second variant. Determination of the Taylor coefficients. We get by a rearrangement,

f(2) =z ().

Then a differentiation gives
f1'(=2) ==2f"(2) + f(2),

and thus
[P =21"(2)+2f(2).

We shall now show by induction that

(5) fUHV(z) =2 fT(2) 40 fD(2).

It follows from the above that (5) holds for n = 1, 2. Assume that (5) holds for some n € N. Then
by another differentiation,

FOr(2) = 2 fOD(2) + (n+ 1) f M) (2),

which has the same structure as (5), only with n replaced by n + 1. Then the claim follows by
induction (the bootstrap principle).

Now, if we put z = 0 into (5), then

(6) FUF0(0) = n f" 70 (0).

It follows from the original equation that
f(0)=0-£(0) =0,

hence we conclude from (6) that
) =0 for every n € Np.

We still have to find £(2™)(0). However,
FE(0) = (20— 1) fC"=2)(0),

so by recursion,

fE©0) 1 fA(0) 1 _1 ! LI

@) 2n @n—2) T 2n 2m-2 2
Then by insertion into Taylor’s formula we formally obtain,
—+oo +oo 2\ " 2
11 45, 1 [z _ z
=103 qrge =102 5 (5) =r0-eo(5).

where we have recognized the exponential series of radius of convergence co.
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Third variant. The power series method. Assume that
+o0o
=30
n=0

is a power series solution which is convergent for |z| < R. Then we have in this domain of

convergence,

—+00
= g nanz" "t
n=1

By insertion of these series into the differential equation we get for |z| < R (where we shall find
the radius of convergence R later) that

—+o0 +oo

+oo
0 = fllz)—2f(») = Z(TH— Dan 12" Zan =a; + Z(n + Dapy12" — Zan_lz”
n=1

Si.

Swedish Institute

WWW.§

n=0 n=1

+oo
= a; + Z {(n+1)ans1 — an—1}2".

n=1

Today’s job market values amb
universities foster these qualiti
close to the latest ideas and glo

Whatever your career goals
skilz and a competitive advantage

Download free books at BookBooN.com

74


http://bookboon.com/count/pdf/364494/74

Complex Functions Examples c-4 Linear differential equations and the power series method

By using the identity theorem we get a; = 0 and the recursion formula

(7) (n+ Dapt1 = an—1, n € N.

Since a; = 0, and since there is a leap of 2 in the recursion formula (7), we conclude that
a9n+1 =0 for n € N.

For even indices we get instead the recursion formula
2n agy, = Az(n-1);

hence by recursion,

1 1 1 B 1 1
Gon = o =) = oy o — 1) P T T e —1) 2.1 0 T

We then conclude from

a2(n—1
¥:2n—>+oo for n — 400,

A2
that the z2-radius of convergence is 400, hence the z-radius of convergence is also +o00, and the
series can be written as

“+oo 2
1 Z
f(z):aOnE:O—2n-—z OnE On' ( ) = ag exp (—2>, z e C.

Example 5.5 Solve the differential equation

(1=2)f'(2) —2f(2) =

by inserting a formal power series.

Remark 5.4 We shall as usual go through all three standard solution variants. ¢

First variant. Inspection. When z # 1, we multiply by 1 — z # 0 and obtain the equivalent equation

O = -2 2N = (V) 2 D)
= 1P e TR = e (1))
The primitive is (z — 1)2f(2) = ¢, hence

(z =1

Only the zero solution can be extended to pass the singularity.

f(z) = ceC, zeC\{1}.
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Second variant. Determination of the Taylor coefficients. It follows by a differentiation of

(1= 2)f(z) — 2/() = 0

that
(1=2)f"(z) =3f'(2) = 0.

Then we prove by induction that

(8) (1=2)f™(z) = (n+1)f"V(z) = 0.

Assume that (8) holds for some n € N. Then a differentiation gives
(1=2)f" D = (n+2)f™(z) =0,

which has the same structure as (8), only with n replaced by n 4 1. Since (8) holds for n = 1, the
claim follows by induction (the bootstrap principle), so (8) holds in general.

If we put z = 0 into (8), then
F0(0) = (n+ 1) F"71(0).
We divide by (n 4+ 1)! and then obtain by recursion that

fO) Vo) ) o)

n+1!  nl 2! -
We conclude that
AR

n!

— (n+1)£(0).

n

The formal series solution is

+oo
f(z)=ao Z(n +1)z".
n=0

We see that the radius of convergence is

r= lim =1

1
nFe Ynk 1

and that we have for |z] < 1,

“+o0 d +oo d . 1
= E ]_ n = _— E n+1 = —_— = . .
Je) = a n:o(n Tz a0 dz n:oz o dz 1—z @0 (1—2)?

Third variant. The power series method. Assume that the solution has the form

“+oo
flz)= Z anz" for |z] < R,
n=0
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where the coefficients a,, and the radius of convergence R > 0 are the unknown.

Since z = 1 is the only singular point, we may expect that the radius of convergence is either
R =1 or R = +o00, if the solution can be extended beyond z = 1.

When we put
+o0 foo
f(z)= Zanz” and  f'(z) = Znanznfl
n=0 n=1

into the differential equation, and |z| < R, then

+oo +oo “+oo +oo +oo
0 = E nanz" "t — Z na,z" — 2 Z 2" = Z(n + Dayy12" — Z(n + 2)anz"
n=1 n=0 n=0 n=0

n=1
(n=0)

+oo
= Z {(n+Dapt1 — (n+ 2)an} 2"
n=0

We conclude from the identity theorem that we have therecursion formula
(n+ Dapsr = (n+2)ay, n € Ny.

This is divided by (n + 1)(n+2) # 0 for n € Ny, and then we immediately get by recursion that

1 1 1 1
— O] = —— App] = =
m+D)+1 " pp2t!

R e R

and we get immediately, a,, = (n + 1)ag. Therefore, the formal series solution is given by (with
some obvious manipulations)

_ 'S 12" = <« n—1 __ d = n\| _ d 1 _ ao
f(z)_aonzz;)(n—k )z —aonzzzlnz =ao - Zz =a |75 RO

n=0

and it is trivial that the radius of convergence is 1.
A check is also trivial, and it even follows that

ag
(1—2)?

is a solution of the differential equation in C\ {1}.
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Example 5.6 Solve the differential equation

(223 =22) f"(2)— (62 —22) f'(2)+(62—2)f(2) =0

“+o0o

by inserting a formal power series expansion f(z) = ") anz".

Remark 5.5 In this case it is rather difficult directly to find the Taylor coefficients, so we shall only
demonstrate the other two solution variants. However, ironically (left to the reader), it can be shown
that the determination of the Taylor coefficients actually is the easiest method in the actual case,
which is far from evident. Hence, one will not always be able in advance to judge which method is
the easiest to apply. ¢

First variant. Inspection. This method is also difficult, because one shall divide by the not so obvious
polynomial (2z — 1)22? (here I have been guided by the coefficient of the term of highest order of

1
differentiation). If we do this, then we get for z # 3 and z #£ 0,
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(22—1)22 2(3z)z 2(3z—1)

0 = o 76 - B e+ R )
4z—1 , 4z—1 62—2 , 62—2

- (22 0.1~ @oee f(z)+{(2z—1)222 - (2z—1)222}f( )+ 5 s 1)
- { 22 1)z } 2,22211 fz)+ (25:)222:3 I

d " (2) 622 -2z 6z—2 62—2
- { ZJ; 1)z } 22 1)z { 21221 1) T oy f(’z)}+ 212 ¥

( )2z ( ) ( )
_ d ') f(2) _df f) f(2)
- (22— 1)z } { 1)22}_(12{(22—1)2_(2z—1)22}
1

- dci{2z—1dz <f7>}

We have proved that

iz ()} -

A primitive is given by

L4 (1) o,

2z —1 dz z

thus

4 (M) =y (22— 1).

dz z

Another primitive is

@201'(22—2)4—6'2,

f(z) =C1- (2° = 2%) + Coz.
A check shows that this is the complete solution in C for any choice of the constants Cy, Cy € C.

Second variant. The power series method. The method of inspection relies on a rather nasty trick,
and the method of determination of the Taylor coefficients does not look promising (however, cf.
the remark in the beginning of the example). Therefore, one would usually start with the power
series method, in particular because the assumptions of the existence theorem are not fulfilled at
the singular point zg. And even by the power series method one must be very careful, because the

radius of convergence could be R = 0. In fact, the roots of the polynomial coefficient 223 — 22 are

1
0 and 2 so the possible radii of convergence are 0, 3 and +oco0.
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If we put the formal series

+o00 +o00 +00
FO=Y. FE =Y na i)=Y nn—1a, 2,
n=0 n=1 n=2

(where we later shall find the radius of convergence R) into the equation, we get

0 = (22°-22) f"(2)— (62 —22) f'(2)+(62—2)f(z)

+oo +oo +oo
= Z 2n(n—1)a, 2" — Z nn—1)a,z" — Z 6na, "1
(n=0) (n=0) (n=0)

—+o0 —+o0 —+oo
+ E 2na, 2" + g Gan, 2"t — E 2a,,z"
n=0 n=0

n=1

(n=0)

+00 too
= Z?{nz—n73n+3}anz"+l —Z{nz—n72n+2}anz"
n=0 n=0

+o0o +o0o
= Z 2 (n2 —4n + 3) anz"tt — Z (n2 —3n+ 2) anz"
n=0 n=0
+o0 too
= Z 2(n —3)(n — apz"" — Z(n —2)(n—1)ayz",
n=0 n=0
thus
“+ o0 “+o0
0 = Z 2(n —3)(n — apz"" — Z(n = 2)(n—1)apz"
n=0 n=0
+o0 too
= Z 2(n—4)(n — 2)a,_12" — Z(n —2)(n—1)ayz"
n=1 n=0
—+oo
= —2a0+ Y (n—2){2(n—4)an_1 — (n—1)a,} 2"
n=1

It follows from the identity theorem that we have ag = 0 and the recursion formula
(9) (n—2){2(n —4)an—1 — (n—1)a,} =0, n € N.

Remark 5.6 Notice that we here have kept the common factor. The reason is that if n — 2 is
removed, then we latently divide by 0, when n = 2. This is one of the pitfalls of the power series
method. ¢

We have proved that ag = 1. Then put n =1 into (9) in order to get
(-1)-{2-(=3)-ap—0-a1}=6-04+0-a; =0,

which clearly holds no matter the choice of a1, thus a; is an arbitrary constant.
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Then put n = 2 into (9). In this case we get the trivial identity
(10) 0- {740,1 — (lg} = O,

S0 ag is also an arbitrary constant. This shows why we shall keep the factor n — 2 in (9), because
we otherwise would obtain a false solution of (10).

If n > 2, then n —2 # 0, and n — 1 # 0, hence we get by solution of (9),

2(n—4)

11 =
(11) an n—1

Ap—1 for n > 3.
If n = 4, then a4y = 0, and then we get by induction of (11) that a,, = 0 for every n > 4.

We still have to consider the case n = 3. Here,

2(3—4
ag:bazz—am

3-1
and the complete solution then becomes
f(z) =a1z+as (2* —2%).

This solution is a very trivial power series with the domain of convergence equal to C. A check of
the solution shows that it is indeed the complete solution in C.

Remark 5.7 Here the reader should pay attention to another pitfall in the computation. If
an, # 0, then it follows from (11) that

Therefore, one may be misled to believe that the radius of convergence is

2 n—4| 2

— |7 = lim ‘

Ay, n—-+o0o

1 n—l‘_l

However, this computation is only correct, if a,, # 0 for every n, and this was not the case here.
We have
1n-1
im —
n—+oo 2 n—4

.0

1
R= Z =
+oo>2
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Example 5.7 Solve the differential equation

f'(z) =2 f(z) =0

_ yteo

by inserting a formal power series f(z) =Y ") anz™.

Remark 5.8 In case of linear differential equations of order > 2 it is very rare that the method
of inspection is successful, and the same can be said about the method of determining the Taylor
coefficients. In the present case we even end up with a series expression which cannot be expressed
by an elementary function. Thus we are only left with the power series method. ¢

If we put the formal power series

“+o0 —+oo —+oo
FE =) anz", f(2) =) nanz"h f(2) =) n(n—1apz""?
n=0 n=1 n=2
into the differential equation, we get
“+o0 —+o0 —+oo —+o0
0 = f"2)—-z2f(z)= Z n(n —1a,z""2 - Z anz"t = Z (n 4 3)(n + 2)an 132" — Z an 2"t
n=2 n=0 n=-—1 n=0
+oo
= 2a5+ Z {(n+3)(n+2)anis —an} 2"
n=0

o
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Then it follows by the identity theorem that as = 0 and we have the recursion formula

1

(12) anis = m

Qp, n € Ny,

thus as, o = 0 for n € Ny, and

1 1 1

11
Gn = 3 BT Br3)Bn—4) Gn-6)@n-7) 2 2 1

1 1 1 11
a P . . e — e — .a
LT Bn+1) 30 3n—2)3n—3) (3n—5)(3n—6) 4 3 "

and the complete solution (which is not nice) is formally given by

o . e e — 0 — . Sn
fer = a0;3n(3n—1) (Bn-3)Bn-4) 327
+oo
1 1 11 3n+1
+a1§(3n+1)3n (3n_2)(3n—3) 4 3 z .

The easiest way to find the radius of convergence is by using the recursion formula (12). We conclude
that the a3-radius of convergence for each of the two series of solution is given by

= lim (n+3)(n+2) =+oc.

3 = lim
QZ n—-+4oo

n—-+o0o

Ap41

Hence we conclude that the domain of convergence is C.

Example 5.8 Solve the differential equation
(1= 22) () = 22 f'(2) + 2£(2) = 0

by inserting a formal power series f(z) = Z:i% anz".

Remark 5.9 Here, the power series method is the safe method, However, we shall later show that it
is even here not too difficult to find the Taylor coefficients. On the other hand one should not waste
time on the inspection method. ¢

First variant. The power series method. The singular points are the roots of 1 — 22, hence +1. We
may therefore expect that the radius of convergence is either 1 or +oco.

If we put the formal power series

00 +o0 +o00
FE) =D anz f(2) =D nanz" f1(2) =Y n(n - a2,
n=0 n=1 n=2
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into the differential equation, we get

0 = (1-2%) f"(2) = 22f'(2) + 2f(2)

—+oo +oo —+o0 +oo
— Zn(nfl)anznfzf Z nn—1)a,z"— Z 2nanz"+z 2a,,z"
n=2 n=2 n=1 n=0
(n=0) (n=0)
+oo +oo
= Z(n +2)(n+ Dapg2" — Z {n®+n—2}a,2"
n=0 n=0
“+o0o
= Z(n +2){(n+ Dani2 — (n—a,} 2"
n=0

Since n + 2 # 0 for n € Ny, it follows by the identity theorem that we have the recursion formula
(n+ Dapso = (n— 1)ay, n € Ny.

Thus, the structure is given by
{n+2} — Dapsa = (n— Day,, n € Ny.

If we split into n = 2p even and n = 2p + 1 odd, it follows by recursion that
(2p —1agy =---=(0—-1)ap and 2pagyt1 =---=(1—-1)a; =0,

thus aspy1 = 0 for p € N, and a; is an arbitrary constant, and

1
agp = — ao,
2p—1

where ag is also an arbitrary constant. Therefore, the formal power series is

+oo 1
— 2n
f(z)falzfaong_o 517

which of course has 1 as radius of convergence, if ag # 0.
If ap = 0, then f(z) = a1z is convergent in C.

Since
d <X 1 ™= 1 11 1 1
_Z 2’2”_1:222”: s == + = ,
dzn:12n—1 o 1—=z 21—z 21+z
a primitive in |z] < 1 is given by
=X 1 1 1 1 1+2
2n—1
— —~Log(l—2)+ -Log(1+2) ==L
> gy 5 Loe(1 =) + 5 Log(1+2) = Log (12,

because both 1 —z and 1+ z lie in the right half plane, so their principal arguments lie in } —

0ol
ol

Then the solution can be written

1 1
f(Z)ZG/O{l_EzLOg (l—i_—z)}—i—alz for |Z|<1
—Z
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Second variant. Determination of the Taylor coefficients. When we differentiate the equation
(1—2%) f"(z) =22 f'(2) +2 f(z) =0
a couple of times, then
(1= 22) FO) (=) = 42 f7(2) = 0 (=) = 0,
(1—2%) fW(2) =62 fO)(2) —4- fP(2) =0,
(1-2%) FO(2) =82 fD(2) =10 fO(2) = 0,
which are special cases of the formula
(13) (1—2%) fM(2)—2(n—1)zf" D (z)—n(n-3)f""2(z) =0
forn=2, 3,4, 5.
Assume that (13) holds for some n € N\ {1}. Then by differentiation,
(1=2%) " (2) =2(n+ 1= 1)z f D (@) = {n(n=3) +2(n-1)} f" 7V (2) = 0,
where

nn—3)+2n—-1) = n*=3n+2n—-2=n>—-—n—-2
(n+1)(n—-2)=Mn+1){n+1} -3),

and it follows by induction that (13) holds for every n € N\ {1}.

If we put z = 0 into (13), then
™) —nn—-3)f"20)=0, forn>2,
and the Taylor coefficients are given by the recursion formula

_ SN0 n(n=3) gy =3 [P0 n-3
ol nl f 2(0)_n—1' (n —2)! Tao1 "

an

thus
(n—1)an,=n—-3)an—2={n -2} — Da,_2.
Ifn=2p+1,peN,isodd and > 1, we get by recursion,
2p+1—1)agyt1 =---=(1—-1)a; =0,
where ay is an arbitrary constant.
If n=2p, p € N, is even, then

(2p — 1)a2p == (0 — l)ao = —Aaop,
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hence

1

Agp = —m ao+, for pc N,

where ag is an arbitrary constant. We get as above the formal series

1
zQp,
2p—1

“+o0
f(z)=a1z —ag Z
p=0

and it is again obvious that the domain of convergence is {z € C | |z| < 1}, if ag # 0, and C, if
ap = 0.

The determination of the sum function is the same as in the first variant, so it shall not be repeated
here.

o
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Example 5.9 Solve the differential equation

(1=2%) f"(2) +6 f(z) =0

_ " teo

by insertion of a formal power series f(z) =Y ") anz".

The singular points are +1, so we may expect that the radius of convergence is either 1 or 4oc.

If we put the formal power series

—+oo —+oo
f(z) = Z ap,z" and  f'(2) = Z n(n —1)a,z" >
n=0 n=2
into the differential equation, then
+o00 +oo +oo
0 = (1=2*)f"(2)+6f(z)= Z n(n —1)a,z" "% — Z n(n —1)apz" + Z 6a,z"
n=2 (52’6) n=0
+00 o
= Z(n +2)(n+ Dapsoz" — Z {n*—n—06}a,2"
n=0 n=0
—+oo
= 3 (D {0+ Danss — (1 Ban}
n=0

Since n + 2 # 0 for n € Ny, we derive by the identity theorem the recursion formula
(n+1)ante = (n — 3)ay, n € Np.

If n = 3, then a5 = 0, hence as,+1 = 0 for n > 2 by induction.

If n =1, then 2a3 = —2a1, hence a3 = —a;, and one of the two independent solutions is given by
ay (z — 23) ,

and it is of course convergent in C.

If n = 2p, then the recursion formula is written
(2p + 1)agpr2 = (2p — 3)asgy, p € No.

When this is multiplied by 2p — 1 # 0, it follows by recursion that

(2p+1)(2p—Dagpr2 = ({2p+2} = 1)({2p+ 2} — 3)azp42
= (2p—1)(2p—3)agy =--- = (=1)(=3)ao
= 3@0,
thus
3

G2p+2 = A2(p+1) = m @0,
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and hence

3 3
T -1 -1 2n-1(@2n-3) "

The radius of convergence is 1 for ag # 0, and 400 for ag = 0, and the general solution is

+oo
3
— — 23 R f 1.
f(z)=ai1 (2 Z)+a0nz:%(2n—1)(2n—3)z’ or |z| <

Remark 5.10 It is here possible — though not worth the trouble — to express the corresponding
analytic function by means of Log. ¢

Example 5.10 Find all power series with expansion point 0, which are a solution of the differential
equation

2 f"(2) =2 f'(2) +42°f(2) = 0.
Since z = 0 is a singular point, we cannot immediately conclude that there exists a solution.

If we put the formal power series

+oo +oo +oo
FR) =3 ", f(z)=) napz""t, f(z) =Y n(n -1z,
n=0 n=1 n=2

into the differential equation, we get

—+oo

+oo +oo
0 = zf"(2) —2f(2) +42°f(2) = Z n(n —1a,z""" - Z 2na, 2"+ Z 4a,z"*3
n=2 n=1 n=0

(n=1)

—+oo +oo
= Z n(n —3)a,z" " + Z day, 42"t
n=1 n=4
+oo
= 1- (—2)a1+2(—1)a2z+0+z {n(n—3)an+4a, 4} 2"
n=4

Hence by the identity theorem, a1 = 0, as = 0, and the recursion formula
n(n —3)a, = —4a,_4 for n > 4.

It follows immediately by induction that
a4n+1 =0 og Qany2 = 0.

If n = 4p, we get by recursion,
— (-4
— a4(p,1) ... =
4p(4p = 3) Ap(dp —3)A(p — 1)(4p—T7)---4- 1
(—=1)Pag
pl(dp—3)(dp—7)--- 1

Q4p ao
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where the corresponding series is easily shown to have the radius of convergence +oc.
If n =4p+ 3, p € N, then we also get by recursion that

4 -1 o (=1)”
T p ) T @y MU T T plp 3 (ap— 1) -3

as,

and the corresponding series has also the radius of convergence +oc.

Summing up, the complete solution is

f(z)=a 1++ZO:O (=1 2t +a z3++f (=" ZAn+3
0 = nl(dn = 3)(dn —T)---1 ’ = nl(dn+3)(4n—1)---3

for z € C.

Example 5.11 Consider the series

Find its radius of convergence and prove that f(z) satisfies in the domain of convergence the differential
equation

2f1(2) + 2 f'(2) = 427 f(2).

It follows from the estimate

|f(z)\§ZW 2" <> |2 = e (|27))
n=0 n=0

that the domain of convergence is C.

It follows from the definition of f(z) by a differentiations that

+o00 oo _
f/(Z) — z_:l (z% Z2n—1 og f”(Z) — Z:l 2”((27::)2 1) 2:2n—27

hence by insertion into the left hand side of the differential equation,

" : SE 20001 by NS 2y R0 o NS L,
22 +2f(z) = n_l%f +;ﬁ22 :nz_:l(nrf)z 22 :4;mz2

= 42° +ZOO 1' 5 22" = 422 f(2).
— (n!)
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6 The classical differential equations
Example 6.1 By the Bessel equation of order 0 we shall understand the differential equation
Iz +2f(2) +2°f(2) =0.

Find a power series solution
+oo
flz)= E anz"
n=0

of this equation, for which f(0) =1 and f'(0) = 0, and then determine its domain of convergence.
This solution is called the Bessel function af order 0 and it is denoted by Jo(z).

We get by termwise differentiation in the domain of convergence |z| < R,

+o0 too
f(z) = Z na,z" " and  f(z2) = Z n(n —1)a,z""2
n=1 n=2
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When these formal power series are put into the differential equation, we get

400 “+o00 +oo
0 = 22f"(2)+2f(2)+22f(2) = Z n(n —1)apz" + Z na,z" + Z 2" T2
(n=0) (n=0) =0
—+oo —+oo —+oo
= Z n2a,z" + Z Up_22" = 0%ag + 1%2a12 + Z (an,Q + n2an) 2"
n=0 n=2 n=2
Then it follows from the identity theorem that a; = 0, and
1
Ao + na, = 0, dvs. a,= ——5 An-2, n > 2.
n

Remark 6.1 Strictly speaking the example is over-determined, because we again derive that a; = 0
without any assumption at all, and yet it is assumed that f’(0) = a; = 0. We note in particular, that
if our request had been f/(0) # 0, then this problem would not have a solution. ¢
It follows by recursion from a; = 0 that

aspt+1 =0 for n € Ny.
Since f(0) =1, we get ag = 1, hence by recursion,

(GR O G Vi
(ni2n)?  4n(n!)?’

2n —
and the formal series solution is given by

+oo +o00
(=D" (=D" 2\
1 =2 g =" = Z:g (n!)2 () -

n=0

We have trivially the estimate

= 2" I 2\ 2|" z 2
|f(2)<n§_:oﬁ (%) <n§_:()% (5) ZGXP<‘§’><+OO

for every z € C, so the series is convergent everywhere in C, and the domain of convergence for

f(z) = Jo(z) is C.
Example 6.2 We define the Bessel function of order m by

too _1)" 2\ 2n+m

n=0

Prove that J,,,(2) is analytic in C, thus its radius of convergence is 400.

m 2
If we put (%) outside the summation and change variable to w = (g) in the sum, then it follows
that it suffices to prove that

n!(m +n)!

n=0
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is convergent for every w € C. This follows immediately from the estimate

+oo (_1)nwm _ +oo 1 . B 212
> o at| S 2oy " = explul) = exp 2| < +oe,

so the domain of convergence is C, and .J,,(2) is analytic in C.

Example 6.3 We define the Hermite differential equation by
f1(2) +2m f(2) = 22 '(2),

where m is a complex constant.
(a) Find the power series solution which satisfies f(0) =1, f'(0) =0

(b) Find the power series solution which satisfies f(0) =0, f/(0) =

When we put the formal power series

“+oo
Z anz",m f'(z Z na,z" ', f(z) = Z n(n —1)a,z""2,
n=2
into the differential equation, we get
+oo
0 = S -2 f/()+2mf(2) = Y nln— Dayz Z 2na, 2" + Zaman
n=2
(n=0)
+oo
= Y A(n+2)(n+Dany2 —2(n—m)an} 2"
n=0

Since (n + 2)(n+ 1) # 0 for n > 0, we get the following recursion formula by the identity theorem,

2(n —m)

T 2+

n-

We conclude from

2(n—m)
(n+2)(n+1)

‘—>0 for n — 400,

that the z2-radius of convergence — and hence also the z-radius of convergence — is 4-o00.

(a) We have in this case ag = 1 and a; = 0, so it follows immediately by induction that ag,+; = 0.
Then by recursion for even indices,

—9_ d(n-1-2
A2 22(’?17%(2—’2—;7;)'01271,—2%@2(”_1)...
o) ()
- (2n)! J
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and the series becomes

m
Note that if — € N, then the series only contains a finite number of terms, and the solution is a

polynomial in this case.

(b) Here, ap = 0 and a; = 1, hence az, = 0 by induction. Then we get by recursion,

4n<n_1_m__1

. _ 2n-1-m) 2 S
AT Tt 20 YT (2n+1) -2 et
m—1 m—1 m—1
ar (p—1 - —= ) D S TP (.
o) ) ()
(2n +1)! ’

.
s &
= F
| \" Y

272
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and the series becomes

n=0

If m- € N, then the series is reduced to a polynomial. ¢

Example 6.4 We define the Chébyshev differential equation by
(1=2%) f(2) + m*f(2) = 2 f'(2),

where m 1s a complex constant.

(a) Find the power series solution, for which f(0) =1, f'(0) = 0.

(b) Find the power series solution, for which f(0) =0, f'(0) = 1.

When we put the formal power series

+o00 +oo +oo
f(z) = Z anz", f'(z)= Znanz”_l, f'(z) = Zn(n —1)a,z"2,
n=0 n=1 n=2
into the differential equation, we get
0 = (1-2%) f"(2)—=f'(z)+m*f(2)
—+oo +oo —+oo +oo
= Zn(n—l)anzn_Q— Z n(n—1)a,z"— Z nan27‘+2 ma, 2"
n=2 n=2 n=1 n=0
(n=0) (n=0)
+oo
— Z {(n+2)(n+1)ayi2—(n*—m?) a, } 2"
n=0

Since (n+2)(n+2) # 0 for n in the summation domain Ny, we derive the following recursion formula
by the identity theorem,

n? — m? (n+m)(n—m)

(M)%H:Xn+mm+nan—(n+mm+n

ne

If m € Z we sometimes get a polynomial, which of course is convergent in C. If the power series
solution is not a polynomial, then (14) implies that the radius of convergence is 1.

(a) If f(0) =1and f/(0) =0, then ag = 1 and a; = 0. Then we conclude by induction that as,+1 =0

for every odd index.
For the even indices it follows by recursion that
m2
4(n2- 2=
A2n = A2n,,
@n+2)2n+1) " @Cn+2)2n+1) -

@ntm)@n—m) (n+3) (- 3)
(2n+2)(2n+1) "

ao2n4+2 =
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thus since ag = 1,

ofor- o5} 2]

a2n = (271)' ’

and the series becomes

(2n)!

n=0

If % € Z, then we obtain a polynomial with the domain of convergence C.

If % ¢ 7Z, the domain of convergence is {z € C | |z| < 1}.
(b) If f(0) =0 and f'(0) = 1, then ap = 0 and a; = 1. We conclude by induction that ag, = 0 for

even indices.
For the odd indices we get by recursion,

(2n-+m—1)(2n—m—1) 4{<”‘ %) ’ %}{

(2n+1) - 2n fan—1 =
- G {3 -3}

The series is then

Z+Z 2n+ 'H{( ‘7_)2<%)2}'22n+1’

where we notice that we formally must isolate the term corresponding to n = 0.

A2n+41 agp—1 = -

m+1

For € Z we get a polynomial of domain of convergence C.

1
If % ¢ 7, then the domain of convergence is the open disc

{zeC||z <1}
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Example 6.5 We define the Legendre differential equation by
(1=2%) f"(2) + m(m + 1) f(2) = 22 f'(2),

where m is a complex constant.

(a) Find the power series solution, for which f(0) (0) =0.

=1 f
(b) Find the power series solution, for which f(0) =0, f'(0) = 1.

When we put the formal series

+o00 +oo too
f2) =) anz", f(z)=) _na,z""' f'(z) =) n(n—1)az""?,
n=0 n=1 n=2
into the differential equation, we get
0 = (1—22) f"(2)=z f'(z)+m(m+1) f(z)
+oo +oo
= Z n(n—1)a,z" - Z {n(n—1)an+2na, —m(m+1)a,} z"
n=2 n=0
+oo
= Z {(n+2)(n+1)apr2—{n(n+1)—m(m+1)}a,} 2"
n=0

Since (n +2)(n+ 1) # 0 in the summation domain Ny, we get the following recursion formula by the
identity theorem,
nn+1) —m(m+1) n2—m?2+n—-—m (n—m)(n+m-—1)

(15) tnie = = ) "~ x D T mr2mtl)

It is easily seen that one in general has the radius of convergence 1, and that the function in some
cases becomes a polynomial of domain of convergence C, when m € Z.

(a) If f(0) =1 and f'(0) =0, then ag = 1 and a; = 0. Then it follows by induction that ag, 1 =0
for odd indices.
For even indices it follows from the recursion formula (15) that

—1
4(n—1— %) <n—1+m—

2n—2—m)(2n—3+m) 2

2n - (2n—1)

A2n A2n—2 = A2n,—2

2n - (2n — 1)
- w98
T N LA

and the series becomes
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m -m
This expression becomes a polynomial, if either 5 € Ny or € Np.

(b) If f(0) = 0 and f'(0) = 1, then ap = 0 and a; = 1, hence as, = 0 by induction over the even
indices. For odd indices we get by recursion

(2n—1—m)(2n+2+m) 4(”_%“) (n-1+73)

apn4+1 = (2n+1)-2n @2n—1 = (2n+1)-2n

- e m) 2 ()
(1) o2 ) () o

- e mE) ) ()
(o) - ) ()

a2p—1

i .
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and the series becomes

—+oo
4n m—1 m—1 m—1
S (PO T _o oy (R
Z+;(2n+l)!<n 2 )(” 2) ( 2 )X
_ m _ My (M 2nt1
X(" 1+2)(" 2+2) (2)2
= 4n nt m—1 m
= - . ;v - .o 2n+1
S o (L) G+ 5)

m m
This expression becomes a polynomial, if either € Ny or -3 € Np.

Example 6.6 We define the Laguerre differential equation by

2 f'(2) +mf(z) = (z = 1) f'(2),
where m is a complex constant.

(a) Assume that m # 0. Prove that there does not exist any solution of the equation, such that
(i) f(0)=1, f(0)=0, (i) f(0)=0, f'(0)=1.
(b) Prove that the equation has a power series solution, which satisfies the conditions

O =1, F0)=-m.

When we put the formal series

+oo +oo too
f(z) = Z a2, f'(z) = Z na,z"t,  f(2) = Z n(n —1a,z""2,
n=0 n=1 n=2
into the differential equation, we get
0 = zf"(2)+ (1 —2)f(z) +mf(2)
+oo +oo +oo +oo
- Z n(n—l)anz"_l+z nanz""1— Z nanz"—kz ma,z"
n=2 n=1 n=1 n=0
(n=1) (n=0)

+oo
= Z {(n+1)ans1 — (n—m)ay } 2"
n=0

Since n + 1 # 0 for n in the summation domain Ny, we get the following recursion formula by the
identity theorem,

n—m

1 n = 7 \o Un,
(6)a+1 (n+1)2a

nGNo.
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The leap of the indices in this recursion formula is only 1, so we conclude that (apart from a constant
factor) there can at most be one power series solution. Now assume that m ¢ Ny, so the series has
not degenerated into a polynomial. Then

12
:(n—i— ) — 400 for n — 400,
n—m

an

Ap+41

and we conclude that (apart from a constant factor) there will always be a power series solution and
that its domain of convergence is C. This is of course also true for m € Ny, when the solution becomes
a polynomial.

(a) If we put n = 0 into the recursion formula (16), then
a1 = —Mmaog.
Hence we see for m # 0, that either ay and a; are both zero, or none of them are zero. Now, the

two given initial conditions are characterized by one being 0, while the other is # 0, so we conclude
that no power series solution can fulfil these initial conditions.

(b) Here we have a; = —m - ag, so the initial conditions are fulfilled, and we get by recursion,
n—m—1 (n—m-1)n-m-—2)---(1—m)(—m)
Un = ——5——Ap-1=""" = ,
n? (n!)?

so the series is given by

Xm—m-1)n-—m—2)(1—m)(—m
HZI( domme g Gomiom e

This series becomes a polynomial, when m € Nj.
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7 Some more difficult differential equations

Example 7.1 Given the differential equation
1 1
/ — —
Fe) =351 (4)'
Assuming that f(z) can be expressed by a power series
+oo
)= "anz",  for|zl <o,
n=0

we shall find a recursion formula for a, expressed by a,_1.
Find the radius of convergence o of the series.
Then express a, by means of an_o, and in general a,, by ag.

HINT: Here we have a couple of variants. In some of them, though not all, we may benefit from the

formula

1
1—|—2—|—--~—|—n:§n(n+1).

Let ag = f(0) = 1. find the power series expansion of f(z) and the corresponding domain of conver-

gence.

HINT: The function cannot be expressed by elementary functions.

Remark 7.1 This is an non-typical example, because the variable on the left hand side is z, while
it is Z on the right hand side, i.e. the derivative at a point z # 0 is expressed by the value of the

z
function at another point 1 #*2z. 0

Assume that
“+o0
flz)= Z anz", 2| < o,
n=0

is a power series expansion of a solution. Then

“+oo
z Z\"™ a” z
_ _ __ ntoo n
F() =2 (5) =Xn=05=" for|ff<e

where the condition E‘ < o of course is fulfilled, when |z| < p.

Furthermore,
+oo +oo
fl(z) = Znanz"_l = Z(n + Dapy12" for |z| < o.
n=1 n=0

When these series are put into the equation, we get

+oo 1+oo 1

“+o0

n=0 n=0

100
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Since n+1 # 0 in the summation domain Ny, we get the following recursion formula from the identity
theorem,

1

17 =0
( ) Ap 41 (n+1)24" Qp,y

n € Np.

It follows immediately from (17) that if ag # 0, then all a,, # 0 for n € Ny. Assuming this, it follows
from

An

=(n+1)-2-4" - 40 for n — +oo,
An+41

that the radius of convergence is p = 4o00.

We can now find the solution of the recursion formula (17) in many ways. Here we shall give some of
them:
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First method. The recursion formula (17) is easiest solved by a trick, in which we multiply (17) by
(n+ 1)1200+D° Then

(n+ 1)120n+1)°

S T

(n+ 1)!2("+1)2an+1 = n=nl2 an = n! 2"2an,

and we see that we obtain the right hand side from the left hand side by replacing n everywhere
by n — 1. We therefore get by recursion,

(n+1)! 2("“)2&”“ =n! 2"2an =... =112 = 012% = aq,
thus
1
an = alon? ao,

and the solution is
+oo 1
f(Z):CLQZWZn, z e C.
n=0

Second method. ALTERNATIVELY it follows from (17) that

1 2

W= gt T g e nER

hence by recursion,

2 2 2
Ap_1 = .
nod4n TN T pan (p = 1)t

ap = (n—2, n > 2,

and in general,

2 2 2 2 on
aldn (n—1)dn1 2,42 1.4 %07 prarezen 0
on o 1

= an = an =
nl 43 n+1) 70 T pronta 10T ron?

(07%% ==

agp, n € Np.

We derive once more that the radius of convergence is +00. Note that we have applied the hint.
The general solution is then given by

+oo
1 1
(18) f(z) = ao E ol on® 2", ap€C, z€C,
n=0

and when ag = f(0) = 1, we of course get

f(z)= +§oo L1 2" zeC
- —| n2 ) )
= n! 2

which cannot be further reduced.
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Third method. ALTERNATIVELY we may early in the process apply that 47 = 22". Then the
recursion formula (17) can be written

1
Un = 921 dn-1-

Then note that n? — (n — 1)?2 = 2n — 1, so we get a telescopic sum by insertion,

n

SN -1 =3 {2 (-1} =n -0 =n?

=1 j=1
This means that

- 1 - - 1 1 aq - ap - aq
In = g1 nml T T et (n—1)-222=3 1.21  pl2l43+-+2n-1) — plon®’

Fourth method. DETERMINATION OF THE TAYLOR COEFFICIENTS. It is not necessary to apply the
recursion formula (17). In fact, if we differentiate the differential equation

)= L (?
f(z)_2f<4)
then it follows by the chain rule that
my= L Ly L L L rzy 11,z
7@ =3 4f<4)’2 1 2f(42)’22 4f(42)’

and furthermore,

PCTETEE ST Y P N R YA TS N N A

and then by induction,

1 1 P
L 1 iz
/ (Z) omn 4,42,,,4n_1f(4n), n € N.

We therefore get the Taylor series

100 r(n) +0o0
i) = SOy L L

2_71 4%(77,71)77, ’ E o

|
n=0 n n=0
400 1 +o00 1
= SO g IO 2 g

i.e. the same series as above with C as the domain of convergence.
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Example 7.2 Given the differential equation
(19) 22 f"(2) + (3 = 22)f'(2) — f(2) = 0.

Find every power series solution from 0 of (19) and its radius of convergence.

Prove that (19) also has a power function as a s solution in the plane with a branch cut

C\(R- U {0}).

1) When the formal power series

“+oo

+o0 +o0
f(z) = Z anz", f(z) = Z na,z"" 1(z) = Z n(n —1)a,z""2,
n=0 n=1

n=2

are put into (19), we get

0 = 22f"(2)+ (B -22)f"(2) - f(2)

n=0

+oo +oo +oo —+oo
= Z 2n(n — 1)a,z" "' + Z 3nan,z" "t — Z 2na, 2" — Z anz"
(n=1) n=l (n=0)
+o00 foo
= Z n(2n — 24 3)a,z" " — 2(271 + Da,z"
n=1 n=0
+o0 too
= Z n(2n + 1)a,z"" ! — Z anz"
n=1 n=0
+oo
= Z {(n+1)2n+3)ap+1 — (2n+ Da,} 2".
n=0

Then by the identity theorem,
(n+1)(2n+ 3)ant1 — (2n+ 1)a, =0, n € Np.

Hence we obtain the recursion formula

1 2n+1 1 2n+1 2n—1
(07%% . Ay = = . . .
i n+1 2n+3 (m+1)! 2n+3 2n+1
1 1

T 43 ()

so by a change of index,

1 1
= - — Q,
2n+1 n! o

an

and the series is given by

+o0o 1 1
f(z):aoz:m'mzn,
n=0

The domain of convergence is obviously C.

s =ayg
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2) This question may look strange, until one realizes that the domain
C\ (R U {0})

is natural for a power series expansion of the form

“+o0
[ = 3 anmth,

n—=—oo

We get from this by a formal differentiation in the domain,

= 1 ;
Fe =Y <n+§> an2""2,
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hence by insertion

0 22 f"(2) + (3 = 22)f'(2) — f(2)

= 1 1 ;X 1 .
O O R e O (R )

+oo 1 +oo
1 1
- ngoo 2 (n + 5) a,z"tz — n;m a, 2"tz
+oo 1 1 +oo
1 1
(D S
X1 L R .
= Z 5 2n+1)2n—1+3)a,z""2 — Z 2(n + 1)a,z"*2
+00 T
1 1
= Z 2n+1)(n+1Da,z""2 — Z 2(n+ 1)a,2""2
+oo +o0o
1 1
= Z(Zn +3)(n+ 2)an112"12 — Z 2(n +1)a,z""=2
+oo .
= Z {(2n +3)(n +2)any1 — 2(n+ 1)a, } 2" 12,

Then we get the following recursion formula by the identity theorem,
2n+3)(n+ 2)an+1 = 2(n + 1)ay,, n € Z.
If we put n = —1, we get ap = 0, while a_; is indefinite.

If we instead put n = —2, then a_o = 0, and again a_; is indefinitet.
We conclude that another power solution is

o) = % 2eC\ (R U {0}).

Remark 7.2 ALTERNATIVELY, the equation can be solved by using the change of variable,
w=/z, z = w?, and f(z) = g(w).

Then by the chain rule,

72 = o (w)- 2 = () = 5 g/ (w),
du
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By insertion and reduction and some computation we finally get
59" @)~ fw— = b w) — g(w).
2 w

Then introduce another function by

ow) =+ h(w),  hw) = wg(w)

This function satisfies the equation
R (w) — 2w k' (w) = 0,

which has the trivial solution h(w) = ¢ constant, hence

Example 7.3 Solve the differential equation
2(1=2)f"(2) + (42 = 2)f'(2) = 4f(2) = 0

by insertion of a formal power series of the form

E apz".

n=0

When we insert the series and the termwise differentiated series, we formally get

400 +o00 +oo
0 = (2% Z n(n—1)a,z" "4 (42—2) Z napz" ' —4 Z anz"
n=2 n=1 n=0
400 400 +o00 +o00 + o0
= Z n(n—1)a,z" " — Z n(n—1)a,z"+4 Z na,z" —2 Z nanz""1—4 Z anz"
n=2 n=2 n=1 n=1 n=0
—+oo —+o0
= Z{n(n—l)—2n}anzn_1 + Z{—n(n—1)+4n—4}anz"
n=1 n=0
“+o0 “+o0
= Z n(n—3)a,z""* + Z(4fn)(n71)anz”
n=1 n=0

“+o0
= Z {(n+1)(n—-2)apnt1 — (n—4)(n—1a,}2".
n=0

Here we have added some zero terms and changed the summation index.
Then we get the following recursion formula from the identity theorem,

(n+1)(n—2)aps1 = (n—4)(n — ay,, n € Ny.
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This recursion formula contains the zeros n = 1, 2, 4, so we shall first check the valuesn =0, 1, ...,
4, separately. Then

n=0 gives —2a; = 4ag,
n=1 giver ay=0,
n=2 gives 0= —2aq,
n=3 gives 4ay = —2as,

n=4 gives a5 =0,
n>5 gives a,=0.

This gives us the solution
1
f(z) =ap(1 —22)+as (1—57;4), zeC,

where ag and ag are arbitrary complex constants.
Since f is a polynomial, the domain of convergence is trivially C.

Example 7.4 Given the differential equation
(20) (22% =32 +1) f"(2) + (82 — 6) f'(2) + 4f(2).

1) Prove that if f(z) = ;:E) anz"™ is a solution of (20), then the coefficients satisfy the recursion
formula
Ant2 = 3Ap41 — 20y, n € N.

2) Prove that
an = (2" —-1)a; — (2" — 2) ao, n € Np.

3) Find the domain of convergence of the solution series.
4) Ezxpress the solution series by elementary functions.

5) Prove that the solutions in Q can be extended to C, with the exception of a few points in C.

Remark 7.3 It is actually possible to solve the equation by inspection and some manipulation.
Here we shall only sketch this method, leaving the details to the reader. We get by some small
rearrangements

0 = (222 =32+1) f"(2) + (82 — 6) f'(2) + 4f(2)
= {(22° =32 41) f"(2) + (42 = 3)['(2)} + {(42 = 3)f'(2) + 4/ (2)}

d
= = {(22> =32 +1) f'(2) + (42 = 3)f(2) }
d2
= 3 {(2 =32+1) f(2)}.
Hence by two integrations,
(22° =32 4+1) f(2) = c12 + co,

where ¢y and ¢; are arbitrary constants. Then it is easy to find f(z). ¢
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1) When we put the formal power series

+o00 +oo +o00
f(z) = Z an2", f(z) = Z na,z" ", (z) = Z n(n —1)a,z""2,
n=0 n=1 n=2
into the differential equation and add some zero terms, we get
+0o0 +oo +o0
0 = 2 Z n(n—1)a,z" -3 Z n(n—1)a,z""" —}—Z n(n—1)a,z"">
n=0 n=1 n=2

“+o0 e} “+o0
+8 Z na,z" — 6 Z nanz" 144 Z anz"
n=0 n=1 n=0
+o0

= Z {2n(n—1)a, —3(n+1)nap+1+(n+2)(n+1)ans2 + 8na, —6(n+1)a,+1+4a,} 2"

n=0
—+oo

- Z {(2n*+6n+4) a, —3(n+1)(n+2)an41+(n+2)(n+1)an42} 2"
n=0

“+o00
= Z(n + 1) (n+2){2an — 3ant1 + anta} 2"

n=0
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Since (n + 1)(n + 2) # 0 for n € Ny, we obtain the following recursion formula by the identity
theorem,

An+2 = 3Ap41 — 20y, n € Ny.
2) If we put b, = an41 — ay, then it follows by the recursion formula above,
bnt1 = apao — ang1 = 2{an+1 — an}t = 2by,, n € Ng,
hence by recursion with respect to by,

Upt1 — ap = by = 2"bg = 2" {a1 —ap}.

Then
n—1 n—1
Ay = Z(aj+1 —aj)—i—ao = 22] (a1 —a0)+a0 = (2" —1)0,1 +(2"—2)a0,
Jj=0 j=0

and we have proved the formula.

ALTERNATIVELY, we see that the claimed formula,
an = (2" —1)a; — (2" — 2) ap, n € N,

holds for n = 0 and for n = 1. Then we prove it by induction, assuming that it holds for n and
n + 1. Then by insertion,

—2an 4+ 3ant1 = (2-2"") a1+ (2" —4)ag+ (3-2"T" = 3) a1 + (6 —3-2"") ag
(2" = 1) a1 + (2-2"") ap = an42,

and the formula is proved.
3) If a; = ag, then it follows from the formula above that a,, = ag for every n, so
N={zeC||z| <1}
If instead a1 # ag, then
an = 2" (a1 — ag) + 2ag —ay = 2" {a1 —ag+ 27" (2a9 — al)} )

It follows that /a,, — 2 for n — 400, so

1
Q= — 5.
{ze@’|z|<2}

4) Then compare with the geometric series to obtain

“+o00 “+ o0
a; — ag 2&0—@1
= (a; — 22)% + (2a0 — "=
F0) = o = an) 2020+ (a0 = ) 3 =" = 5 T
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1
5) If a3 =0, then M = C\ {1}. If a; = 2ap, then M =C\ {5} In any other case we get

M:(C\{%,l}.

Clearly, f is analytic in M, and it follows by a differentiation that both (1 —2z)~! and (1 — 2)~*
fulfil (20);

8 (82-6)-2 4  —8(z—1)+2(82—6)+4(1—-22)
Qz=DE-1 G553 1o T1o2 (1-22)2 =0,
2 82—6 4  21-2:)+82—6+4(1— 2
A R G G ( )le—z);r( '=0
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8 Zeros of analytic functions
Example 8.1 Find the order of the zero at z = 0 for each of the functions

(a) 2*{exp (z*) =1}, (b) 6sinz’+2°(:6—=6), (c) e™* -2

Remark 8.1 It will be demonstrated by the variants of solutions that one should be very careful here
by choosing the most convenient method. It is of course possible in all three cases (cf. the definition)
to differentiate, until one reach the smallest number n, for which f(™(0) # 0, but it will usually be
more easy to insert known series expansions for the given functions. In particular, (b) becomes very
difficult to solve by the method of differentiation. ¢

(a) First method. Insertion of Taylor series. It follows from

f(z):zg(ezz—l)222{1—1—%22—&—0(22)—1}:z4+0(z4),

that the order is 4.

Second method. The method of differentiation. We get by successive differentiation,

flz) = 22%" — 22, £(0) =0,
F(2) = 223" +2z¢*” — 2z, 1(0),

F(2) = 42%€*" +1022¢% 4 2¢* — 2, 17(0) =0,
F®(2) =825 +3623¢*" + 24z ¢, @ 0) =0,
F®D(2) = 162%¢*" + 1122%€*" + 15622¢*” + 24¢*”, F®(0) = 24,

so we conclude that the order is 4.

(b) First method. Insertion of Taylor series. 1t follows from

P = sin () 2 (0= 0) =6 {0 - g (9 5 () 00 () f 420 - 0
_ i 15 15
= 202 +0(z )

that the order is 15.

Second method. Differentiation with respect to w = z3. First note that the function is actually a
function of w = 23. If we change variable to w, the differentiation method becomes reasonable,
thought still bigger that the first method. In fact,

f(2) = 6sinz3 + 2° — 623 = 6sinw + w® — 6w = g(w),

and then by differentiation with respect to w,

g(w) = w3 — 6w + 6sinw, g(0) =0,

g'(w) = 3w? — 6 — 6 cos w, g'(0) =0,

9" (w) = 6w — 6sinw, g"(0) =0,
g®)(w) =6 — 6cosw, ®)(0) =0,

g™ (w) = 6sinw, 1(0) =0,
4©)(w) = 6 cosw, 99)(0) = 6 £0,
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and we conclude that

g(w):gw +0(w”) = —w’+o0(v”).
Then
_ 3 _i 3\5 3\5 _i 15 15
F2) =9 () = 55 (%) +0((z))°) = 5527 +0 (%),
so the order of the zero is 15.

Third method. The difference of time consumption of the two methods of (a) was not very big.
However, in the present case, the differentiations really grows wild. We get

( f(z) =6 sin (2°) + 2° — 62°, f(0) =0,
(z) = 18z% cos (2%) 4 92° — 1827, f'(0) =0,
f"(z) = 36z cos (2°) — 542" sin (2%) + 7227 — 362, f(0) =0,
3 (2) = 36cos (2*) — 3242° sin (2°)
—1622° cos (2°) + 5042° — 36, &) =0
f®(2) = —10802% sin (2*) — 19442° cos (2%)
+4862% sin (%) + 30242°, f9(0) =0,

f®)(2) = —2160z sin (2%) — 129602" cos (2°)

4972027 sin (2%) + 14582"° cos (2°)

+15120z, @) =o,
[ (z) = —2160sin (2*) — 58 3202 cos (2°)

+106 9202° sin (z3) + 437402° cos (2°)

—43742"% sin (2%) + 604802, 7©90) =o,
F(2) = —18144022 cos (2*) + 816 4802° sin (%)

+7144202% cos (z ) — 1837082 sin (za)

—131222" cos (2°) + 1814402,
f®(2) = —362880z cos (%) + 4626 7202 sin (2%)

816480027 cos (2°) — 4164 0482'" sin ( %)

—7348322" cos (2°) + 393662"'° sin (2%)

+362 880z, F®0) =0,
FO(2) = —362880 cos (2”) + 19595 520z° sin (2°)

+710337602° cos (2°) — 66 1134880z sin (2%)

—220449602" cos (z*) + 283435227 sin (2°)

+1180982"® cos (=) + 362880,
FU9(2) = 598752002 sin (2?) + 484989 1202z° cos (%)

—808 315 2002° sin (2°) — 462944 160z"" cos (2°)

4108650160z sin (2”) 4 106288202 cos (2°)

—3542942%" sin (2%) £19(0) = o,
FOY(2) = 119750 400z sin 2° + 2604 571 200z* cos 2°

—79214889602" sin z* — 7517331 3602"'° cos 2°

2909934 720z sin z* 4 506 640 4202'° cos 2°

—389723402" sin 2® — 1062 882222 cos 2°, A0 = o,
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F32(2) = 119750400 sin z° + 10 777 536 0002° cos 2°
—63264 136 32025 sin 2> 4+ 98 937 780 4802z° cos 2*
+60 381 145 44022 sin 2* + 16 836 050 8802 '° cos 2*
+2260395 720218 sin 2% — 140300 42422 cos 2°
+318864622* sin 22,
F02(0) =0,
FO9(2) = 3269185920022 cos 2° — 411917 425 9202° sin 2°
—10802324332802% cos 2> + 1021 387 086 7202 sin 2*
+433 6841995202 cos 2% — 91 19527560027 sin z°
—9727496 0642%° cos 2% + 497 428 776223 sin 2°
+9565 938226 cos 23,
F09(0) =0,
FAY(2) = 65383718 400z cos z° — 2157 662 707 200z* sin 2°
—9877611744 00027 cos z° + 14 475 955 253 7602° sin 2°
49135740053 4402 cos 2> — 2851 372283 760216 sin 2*
—468 135 748 08021 cos 2% + 40 623 350 040222 sin 2>
+1741000 716225 cos z° — 28 697 814228 sin 23,
FO9(0) =0,
FI9(2) = 65383718400 cos 2> — 8 826 801 984 0002° sin 2>
—75616 270 329 6002° cos 2% + 174392 387 769 6102° sin 2°
+162 192 486 456 00022 cos z® — 73029 176 700 4802'° sin 2>
—17 448696 064 800218 cos 23 + 2298 120 945 1202 sin 23
+165 395 068 02022 cos 2% — 6 026 540 940227 sin 2°
—86 093 4422°° cos 22,

where finally
F9°2(0) = 65383718400 = 20 #0,

so we conclude that the order of the zero is 15, and

FI90) 15 L 15
z) = ——=2 e = — 2 _|_...'
/() 15! + 20
(¢) It is here difficult — though not quite impossible — to insert the power series expansions, so we
prefer here the method of differentiations. It should, however, be mentioned that there is also here
an alternative, which requires some intuition. We show here three solution variants, which is far
from being exhaustive.

First method. Intuition. Since cosz # 1 and sinz # 0 in a neighbourhood of 0, excluding 0, it
follows that

sin z

u = sin z and v=tanz =
Cos 2

are different in the same neighbourhood, excluding 0. Then

. el — eV
esmz_etanz:eu_ev: '(U—’U),
u—v
where
u v

. et —e . d

lim =lim —e“ =e"=1+#0,
2—0 U — w—0 dw
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and
. . sinz  sinz(cosz — 1)
u—v = sinz—tanz=sinz — =
cos z cos z

3 2

z z
U VA N
= 22 :_§+O(z)7

1_E+...

and we conclude that the zero has order 3.
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Second method. The method of differentiation. We get by successive differentiations,

f(Z) — esinz _ etanz,

f(0) =0,
f'(z) =cosz-es™% — (1+ tan?) 'an 7,
f(0) =0,
f"(z) = (cos? z — sin z) €% — (1 + tan? z) ' 2
—2tanz - (1+ tan? z) '™ =
= (cos® z — sinz) 5% — (1 + tan? 2) (1 + tan z)2e'™" 2,
f//(O) — 07
f3)(z) = (cos® 2 — 3sinz - cos z — cos 2) 51 *
—2tan z (14 tan®2) (1 + tan z)%e' 2
—2 (1 + tan? 2z ? (1 + tan z)etan =
— (1 +tan?z)" (1 + tanz)2e'™n 2,
f(B)(O) = _37

so we conclude that the order is 3.

Third method. A hybrid of the two solutions above. Since

esinz _ etanz — Sinz {1 o etanzfslnz}

and
lim "% =1 #£ 0,
z—0

the task is reduced to finding the order of the zero zy = 0 of the function
g(z) = etan=—sinz _ 1 9(0) = 0.
Here we get by successive differentiations,
g'(z) = (1+tan? z — cos z) etam=—sin =,

g”(Z) = (1 + tan2 Z — COS 2)2 etan z—sin z

+ {2 tan z (1 —+ tan2 Z) + sin Z} etan z—sinz7

g¥(z) = (1 +tan? 2 — cos 2)3 elanz—sinz
+3 {Qtanz (1 + tan?2 z) + Sinz} etan z—sin z

+2 {2 (1 + tan? 2)2 +4tan? 2 (1 + tan? z) + cos z} gtanz—sinz
g¥(0) =3,

so n = 3 is the first order of differentiation for which the result is # 0. This means that the
order of the zero is 3.
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Example 8.2 Find the order of the zero z =0 of

(sin z + sinh z — 22)%.

First method. Series expansion. We get

3 5 3 5 2
(sinz +sinhz — 22)? = {(z—%—&—%—l—-n)—&—(z—i—%—&—%—i—-n)—22}

_ 2 5 2_ 1 10
- {5!Z+ }_3600Z e

and we conclude that the order of the zero is 10.
Second method. The method of differentiation. It suffices to find the order or the zero of
f(z) =sinz + sinh z — 2z,

because {f(z)}? = (sinz + sinh z — 22)? then has twice as many. Note that it is not a good idea
just to differentiate the expression {f(z)}? itself.

We get
f(z) =sinz + sinh z — 2z, f(0) =0,
f'(z) = cosz +coshz — 2, 1'(0) =0,
f"(z) = —sin z + sinh z, 1(0) =0,
f®)(2) = —cos z + cosh 2, @ (0) =0,
f®(2) = sin z + sinh z, f@(0) =0,
f®)(2) = cos z + cosh z, f®(0) =2,

from which we conclude that
_2 5 5
hence

1
(sinz +sinh z — 22)? = 602 2%+ 0 (21,

and the zero has order 10.
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Example 8.3 Find the order of the zero at z =0 of 3sinz — z(2 4 cos z).

First method. Series expansion. We get

. PR 22 2
3smz—z(2—|—cosz):3{2—§+§—~~}—z{2+1—§+z—~'}
—3z—£+iz5— —32+£—i25+ _(L_1L 25+ ——izs—i—
B 2 40 2 24 C\40 24 60 ’

so the zero has order 5.

Second method. Method of differentiation. We get by successive differentiation,

f(z) =3sinz — 2z — zcos z, f(0) =0,
f'(z) =2cosz — 2+ zsin z, 1'(0) =0,
f"(z) = —sinz + z cos z, 1(0) =0,
f@)(2) = —zsinz, f@(0) =0,
f®(2) = —zcosz — sin z, f®(0) =0,
f®)(2) = —2cos z + zsin z, FON(0) = -2,

from which we conclude that
_ 2 5 15
f(z)__ﬁz +...__@z +...7

and the order of the zero is 5.
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Example 8.4 Find the order of the zero at z = 0 of the function

f(2) = 3sinh (2?) — 3sin (2?) — 2°.

First method. Taylor expansion. Clearly, f(z) is analytic in C. Then by a Taylor expansion from

20 = 07
]f(z) = 3sinh(z?) — 3sin () — 2°
—+oo —+oo
B 3 oy 2n+1 3-(=1)™ |, s\2n+1 4
- nz::O(QnJrl)! (%) §(2n+1)! (%) :
— Jio 3 {1—(=1)n}2nt2 56
— (2n+1)!
+oo
> 23 aeprnt2 _ 6
= {2p+1}+ 1)
+00 T
6 8p+6 _ 6 6 8p+6
= —_—Z —Z = — 2
2 T3 2 T3
+
— ZD:O 6 8p+14.
= (4p+1)!

It follows immediately that the order is 14 corresponding to p = 0.
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Second method. o-technique. A shorter variant is to use o-technique:

f(z) = 3sinh(2*) — 3sin (%) — 2°
1

= 3{(22) b (4 5 () 4 () o (ﬂ)}

from which we conclude that the order of the zero is 14.

Third method. Method of differentiation, first variant. If we immediately see that f(z) can be

considered as a function of w = 22,

f(2)

3sinh (zz) — 3sin (22) — 28
= 3sinhw — 3sinw — w?,
then the example is reduced to find the order of the zero of the function
g(w) = 3sinhw — 3sinw — w?, g(0) =0,

at wyg = 0. It follows by differentiation that

g'(w) = 3coshw — 3 cosw — 3w?, g'(0) =0,
¢"(w) = 3sinhw + 3sinw — 6w, g"(0) =0,

g3 (w) = 3coshw + 3cosw — 6, g3 (0) =0,
g (w) = 3sinhw — 3sinw, g®(0) =0,
g®) (w) = 3coshw — 3cosw, g®(0) =0,
9% (w) = 3sinhw + 3sinw, g9 (0) =0,

9" (w) = 3coshw + 3 cosw, gM(0) =6 #0.

Hence, the function g(w) has a zero of order 7 at wo = 0, thus

g(w) =w" - g1 (w), 91(0) # 0.

2

When we put w = z¢, we get

f(z) =g (%) = (22)791 (z%) = 2"g1 (%), g1(0) # 0,

and it follows immediately that f has a zero of order 14 at zp = 0.
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Fourth method. Method of differentiation, second variant. If we do not use any of the shortcuts
above, we have to go through the following computations

f(z) = 3sinh z? — 3sin 22 — 20,
f'(z) = 6z cosh 2% — 6z cos 22 — 625,

f"(z) = 6cosh 22 + 1222 sinh 22 — 6 cos 2
+1222sin 22 — 3024,

@) (2) = 36z sinh 22 4 242 cosh 22 + 362 sin 22
+2423 cos 22 — 12023,

f@(z) = 36sinh 22 4 14422 cosh 22 4 482* sinh 22
+36sin 22 + 14422 cos 22 — 482 sin 22 — 36022,

f®)(2) = 360z cosh 22 4 4802° sinh 22 + 962° cosh 22
+360z cos 22 — 48023 sin 22 — 962° cos 22 — 720z,

f©)(2) = 360 cosh 22 + 216022 sinh 22 + 1440z* cosh 2>
+19225 sinh 22 + 360 cos 22 — 216022 sin 22
—14402% cos 22 + 19225 sin 22 — 720,
f©(0) =0,
f(2) = 5040z sinh 22 + 10 0802° cosh 2% + 40322° sinh 22
+38427 cosh 22 — 5040z sin 22 — 10 08022 cos 22
+40322° sin 22 + 38427 cos 22,
FD(0) =0,
f®)(2) = 5040 sinh 22 4 40 32022 cosh 22 + 40 320z* sinh 22
+107522% cosh 22 + 76828 sinh 22 — 5040 sin 2>
—4032022 cos 22 + 40 320z% sin 22
+107522% cos 22 — 76828 sinh 22,
F®(0) =0,
FO(2) = 90720z cosh 22 + 241 92923 sinh 22 + 145 1522° cosh 22
+27 64827 sinh 22 + 15362” cosh 22 — 90 720z cos 22
424192023 sin 22 + 145 1522° cos 22
—2764827 sin 22 — 153627 cos 22,
f(0) =0,
19 (2) = 90720 cosh 22 + 907 20022 sinh 22
+1209 60024 cosh 22 + 483 8402 sinh 22
+69 12028 cosh 22 + 3072210 sinh 22
—90 720 cos 22 + 907 20022 sin 22
+12096002* cos 22 — 483 84020 sin 22
—69 12028 cos 22 + 3072210 sin 22,
FU0(0) =0,
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FOD(2) = 1995840z sinh 22 + 6 652 8002 cosh 22
+5 322 2402° sinh 22 + 1520 64027 cosh 22
+168 9602 sinh 22 + 6144z cosh 22
+1 995840z sin 22 + 6 652 80023 cos 22
—53222402° sin 22 — 1520 640%7 cos 22
+168 9602 sin 22 + 614421t cos 22,
FED(0) =0,
FU2)(2) = 1995840 sinh 22 + 23 950 08022 cosh 22
+39916 8002* sinh 22 + 21 288 9602 cosh 2>
+4561 92028 sinh 22 + 405 50420 cosh 22
+122882'2 sinh 22 + 1995 840 sin 22
42395008022 cos 22 — 39916 8002 sin 22
—212889602° cos 22 + 4561 92028 sin 22
+405 504210 cos 22 — 12288212 sin 22,
FU2(0) =0,
f33)(2) = 51891 840z cosh 2% + 207 567 3602> sinh 22
+207 567 3602° cosh 22 + 79073 28027 sinh 22
+13 17888027 cosh 22 + 958 4642 sinh 22
+24 576213 cosh 22 + 51 891 840z cos 22
—207 567 36023 sin 22 — 207 567 3602° cos 22
+7907328027 sin 22 + 13178 88027 cos 22
—958 464211 sin 22 — 24 576213 cos 23,

fO(2) = 51891 840 cosh 22 + 726 485 76022 sinh 2>
+1452971 5202* cosh 22 + 968 647 68020 sinh 22
+176 756 48028 cosh 22 4 36 900 86420 sinh 22
4223641622 cosh 22 4+ 49 1522 sin 22
+51 891 840 cos 22 — 726 485 76022 sin 22
—14529715202* cos 22 + 968 647 68025 sin 2>
+276 756 48028 cos 2% — 36 900 864210 sin 22
—22364162'2 cos 22 + 49 152214 sin 2.

Since
6
FD(0) = 103783680 = S0

is the first derivative of f(z) at z = 0, which is different from 0, we conclude that the order is 14.

Remark 8.2 Note that

10 6
VTR Tk

which is in agreement with the result from the first method. ¢
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Example 8.5 1) FEzplain why the function
f(z) = Log (1 + 2%) —sin®2
is analytic in the point set

C\{z€C|Re(z) =0 A [Im(z)| > 1}.

2) Find the order of the zero at z =0 of f.
3) Denote by

—+oo
E apz"
n=0

the Taylor series of f. Find the radius of convergence of the series.
(One shall not give an explicit expression of the general term.)

Figure 10: The domain with the branch cuts from =+i.

1) The principal logarithm is analytic in the plane with the branch cuts. Hence, the function 1 + 22
must not be real negative or zero. The exception set is then

1+2°=—t, >0,
ie.
z=FiV1+t, >0,
thus
Re(z) =0 and [Im(z)| > 1.

We have proved that Log(l + 22) is analytic in the given point set. Since Da sine is analytic in
the complex plane, the claim follows.
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2) Then we have a couple of solution variants.

a) We get from known Taylor series,

1
fz) = Log(1+z2)f§(1fcos2z)
1 1
— 2 4 2
2 4 2 1 4
= {z _Q’Z +~--}—{z — -z +
1
— _624+'."

We conclude that the zero at z = 0 has order 4.
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b) The differentiation method. Here we get:

f'z) = o2 iL 2181112 cos z
= - — sin 2z, 1(0),
z—i—zl zZ—1 1
1 - _ -9 2 "0)=14+1-2=0
3 _ : 3(0) — 25 _ 9 _
O = B +6i)3 + B _62_)3 + 4 sin 2z, fG(0)=2i—2i+0=0,
W) = 4+ +8cos2z, fW=—-6-6+8=—4.

(z+0)* (2 —i)*
It follows that the order of the zero is 4 and that the first term is

-4 4, 14
¢) If one does not start with a decomposition, the differentiations become more difficult:
2
f/(Z) = ?222 — SiHQZ,
2(22+1)—22-2 2(1— 22
f'(z) = ( ) 22 ®  9cos2r = (72) — 2 cos 2z,
(2+1) (14 22)
4(2*+3 4z (22 -3
Oz = u +4sin2z = 2(273) + 4sin 2z,
(z2+1)° (14 22)
—12 (2* 4 62202 + ¢* —12(2* - 622 +1
B = (=" + 62 Z4 ) +8cos2z = (: Z4 ) + 8cos 2z,
(22 4+1) (22 4+1)

followed by putting z = 0.

3) If we write

+oo
= E anz",
n=0

then the domain of convergence is the largest open disc of centrum 0, in which f is analytic. It
follows from the figure that the radius of convergence is 1.

Remark 8.3 Even though it is not requested, it is not difficult to find a,,,

“+oo —+oo
1 1 1
o 2 o n+1 2n n 2n

f(z)fLog(1+z)+§{cos(22)fl}f§ﬁ( 52_: — .

In particular, as,+1 = 0 (odd indices), and
1 1
n = -1 n+1 - -

2 (=1) {n 2~(2n)!}7
thus

o] € =4 = 4 . L Spa— eN

=T e T 2 mEn—1)!  n An -1 "
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It follows that

1 1
2n — 2n 1 .
Vlazn| i)

an

Since ag,+1 = 0 and
) Inn
Un=exp|— | —exp0=1 for n — 4o0,
2n
and

/ 1
2 1+mﬂl forn*)+00,

we get limsup,, ., {/|an| = 1, hence the radius of convergence is 1. {

Example 8.6 Find the order of the zero at z = 0 of the function

f(z) =3 sinhz — 3sinz +exp (2°) — 1.

Using known Taylor expansions,

3sinhz = 32+%Z‘3+...’
—3sinz = 73z+%z?’+---,
exp(z3)—1 = 24
SO
f(z)=223+--,

proving that the zero z = 0 of f(z) has order 3.
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9 Fourier series

Example 9.1 Put z =re'? into the exponential series and then derive some new Fourier series.

It follows from

e =e" cosy+1-e” sint, and x=r-cosf, y=r-sinb,
that
e = e(cosy+isiny) =e" “%cos(r sinf) +ie” % sin(r sin )
— 1 n — 1 n ,ind — r ‘JFOO e
= E —z :E —7r'e :E —cosn@—i—zg — sinnf.
n! n! n! n!
n=0 n=0 n=0 n=0

By separating into the real and the imaginary parts we see that for every r > 0 and every 6 € R,

+oo PR I rn
" cost cos(r sinf) = E — cos né, og el sin? cos(r sinf) = E - sin nf.
n n!
n=0 n=0

Example 9.2 Put z = €%, Prove for m, n € Ny that

1 fem 0 for m #n,
TJo 1 for m =n.
One says that the functions 1, z, 2%, 22, ..., form an orthogonal system on the unit circle.

The example is trivial since we get by insertion

1 2m 1 2m ) 1 2m
27" dO = — / el il df = / e'm=mo dp.
0 0

%0 2m T

If m # n, then

1 2m

. i(m—n)0 do =0
2 0 € ’

and if m = n, then
1 2m

— 1do =1.
T R
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1
Example 9.3 Apply the power series expansion of L0g<1—) i order to get the Fourier series of
—z

r sinf

2 . _rsmé
(a) In(1+7*—2r cosf), (b) Arctan (1 p—

), r e [0,1].

Put z = re'?, where 0 < r < 1. Then

1 +°Oz" +°or” +°Or"
Log( —— | = — = — cosnb +1 — sinn#.
(i) =L - LT e

n=1

On the other hand,

r 1 _ l—rcosf+irsing  1—rcosf+irsinf
1—2z 1—rcosh—irsinf (1 —r cosh)2 4 r2sin® 6 1472 —2r cosb
thus
1 1 in 0
Log <1 —z) =3 ln(l +r2— 9 cos@) + i Arctan (%) ,

1
because 1 — z, and hence also T—> lies in the right half plane. When we identify the real and the
z

imaginary parts, we obtain the Fourier series
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(a)

+oo

2 _ - _ T
ln(l—i—r 2rcos€) 2; - cosnb, 0<r<i,

(b)

7 sin 0 X2
Arctan | ——— | = — sinnf 0<r<l.
(1—rcos9) ;::1 n ’ -

1
Remark 9.1 If instead » > 1, then R = - < 1, and we get
(a’)

In (1—1—7“2 — 2r cos@) = In (r2{1+R2 — 2R cos@}) =2Inr—+1In (1—|—R2 — 2R 0059)

X R2 X1
= 21nr—22—cosn6’=21nr—22—cosn9, r> 1.
n nrt

n=1 n=1
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We cannot find a similar result in (b), because the denominator in

r sin 6
1—17r cosf

1
is zero, when cosf = o= Re]0,1[. ¢

Example 9.4 Assume without proof that

2T o
n=1 n 6
and that

(21) Log (1 —¢€) =In (2 sin g) — % (r—0), 6¢€)o,n).

(a) Letr €]0,1[ and 6 € R. Find the coefficients a,(r) of the Fourier series expansion

Log (1 —r ew) = Z an(r)etn?.
(b) Compute the integral

/ yLog(l—re“’)dee, r€]0,1],

expressed by a,(r).
We assume without proof that

/ |Log (1 — e“g)|2 df = lim |Log (1 — rei9)|2 de.

1
- r—1

Find the value of

/7T ’Log (2 - ew)|2 db.

—T

(¢) Finally, prove by using (21) and (b) that

B 3
In(2sint)}?dt = —.
| m@singyae = 3
(a) Since ‘—r ei9| < 1, we get by insertion of z = —re’? into the logarithmic series that
+0o too
, _q)n ‘ e
Loe (1 — 10\ _ ( _\nint T iné
g( re) Z—n (=r)"e Zne ,
n=1 n=1
and we conclude that
1
an(r)=——1r" forneN; an(r) =0 ellers.
n

Download free books at BookBooN.com

130



Complex Functions Examples c-4 Fourier series

(b) Then by Parseval’s formula,

T 2 =1
i 0 _ 2
/_W{Log(l—rel)’ d9—2wzﬁrn7 r €10,1].
n=1
By using that the limit process r — 1— will give the correct result, we get

/ |L0g(1—em)|2 df = liI{l_/ |Log(1—7‘ew)|2 do

=1 9 =1 2 3
lim. w;nQr w;n2 T =

(c) Finally, it follows from (b) and (21),

3 ™ T
T = / |Log(1—ei9)|2d0:2/ Log (1 —¢'?)| df
— 0

~ o[ {(m(e)) + (e-0) L
= 2/07r{1n<2sing>}2d9+%/07r(7r—9)2d9

3 1 [
= 4/ {ln(2sint)}2dt+—/ t* dt
0 2 0

)

hence by a rearrangement,

3 1(n® 3 3
In(2sint)}2dt =~ — — — p = —.
/O{H( sint)} 4{3 6} 24

3
(In(2sin)}2dt + %

[ME]
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10 The maximum principle

Example 10.1 Given f(z) = (z + 1)2. Find the mazimum and the minimum of |f/z)| in the set A,
where A is the closed triangle of the corners z =10, z =2 and z = 1.

-05

Figure 11: The triangle A.

This example was originally constructed in order to illustrate the maximum principle. However, it is
easily seen that a geometric argument is much easier to apply, because |f(z)| indicates the square of
the distance from —1 to z.

Clearly, the minimum is obtained at z = 0, corresponding to |f(0)| = 1, and the maximum is obtained
at z = 2, corresponding to |f(z)| = 9.

Example 10.2 Find the mazimum of |sin z| on the set [0,27] x [0.27].

Figure 12: The domain €.

It follows from the maximum principle that the maximum is attained at the boundary of the domain.
We find
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1) On the line z =2 +1i-0, z € [0, 27], we get

s

max |sinz| = sin
z€[0,27] 2

3
in—| =1.
sm2‘

2) On the line z =iy, y € [0, 27], we get

max |sin(¢ = max sinhy = sinh(27).
yemﬂl (iy)] ,nax sinhy (2m)

3) On the line z = z + 2im, x € [0, 27], we get

max |sin(z 4+ 2im)| = max |sinz - cosh 2w + i - cos z - sinh 27|
z€[0,27] z€[0,27]

— max Vsin?z - cosh? 27 + cos? -sinh? 27 = max Vcosh? 27 — cos? x
z€[0,27] z€[0,27]

=V cosh? 27 = cosh 2.
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4) On the line z =27 + iy, y € [0,27], we get

max |sin(2r +4iy)| = max |sin(iy)| = max sinhy = sinh27.
y€[0,27] y€[0,27) y€[0,27)

By comparing these four results it follows that

max |'sin z| = cosh 2,

so the maximum is obtained for

3
z:%—i—%ﬁ and 22771-4-22'71'.

Example 10.3 Find the mazimum of |exp (2%)| on {z € C | [z| < 1}.

It follows from the maximum principle that the maximum is attained on the boundary |z| = 1, where
we put z = €'?, so

|eXp (z2)| = ‘exp (22i0)’ = exp(cos 20), 0 € [0, 2x].

Obviously, we obtain the maximum when cos 26 = 1, hence the maximum is e! = e.

Example 10.4 Prove that the transformation

R(z— zp)

T(Z) = 7R2 7202 s

|Z()| < R,

maps the open disc of radius R and centrum 0 into the unit disc with T (z9) = 0.
HINT: Apply the mazimum principle, and prove that |z| = R implies that |T'(z)| = 1.

Clearly, T (z0) = 0. If |z| = R, then

R

2|

R
=—.1=1
R

zZ— 20
R? —Zyz

zZ— 20

IT(z)| = R T

2Z — ZgR Z—2Z

Then it follows from the maximum principle that |T'(z)| < 1 for |z| < R, and since T (z9) = 0, we
cannot have equality. so |T'(z)| < 1 for |z| < R.
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